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U ovome je radu opisana metodologija strojnog ucenja za predvidanje opasnih cestovnih
dionica primjenom ponderiranog indeksa nesreca (Wi). U analizu uklju¢enaje 161 cestovna
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1. Uvod

Prometne nesrece ozbilina su globalna prijetnja javnoj
sigurnosti, pri ¢emu posebno ugrozavaju mladu populaciju.
Svjetska zdravstvena organizacija navodi da su prometne
nesrece vodeci uzrok smrtnosti medu osobama u dobi od 5
do 29 godina, pri Cemu godisnje odnosu vise od 1,19 milijuna
Zivota [1]. lako su sustavne mjere i infrastrukturna poboljSanja
doprinijela smanjenju stopa smrtnosti u razvijenim zemljama,
prosjecan broj smrtnih slucajeva u Europskoj uniji i dalje je visok
i iznosi 45,5 na milijun stanovnika [2].

Stopa smrtnosti u Republici Sjevernoj Makedoniji iznosi 69,5 na
milijun stanovnika [3], Sto je znatno iznad europskog prosjeka
i pokazuje zabrinjavajuci trend. Ti podaci ukazuju na hitnu
potrebu za razvojem novih analitickih pristupa koji bi unaprijedili
sigurnost u prometu, omogucujuci pravodobno prepoznavanje
visokorizicnih dionica i planiranje odgovarajucih mjera.
Suvremene analiticke tehnike poput strojnog ucenja i prostorno-
statistickih metoda omogucuju proaktivno otkrivanje nesigurnih
cestovnih dionica prije nastanka kriticnih dogadaja. Primjena tih
tehnologija omogucuje identifikaciju opasnih zona na temelju
kombiniranog utjecaja viSe Cimbenika, umjesto oslanjanja
isklju¢ivo na povijesne podatke o nesre¢ama.

Cilj ovog istrazivanja bio je razviti metodologiju za predvidanje
nesigurnih cestovnih dionica analizom geometrijskih obiljezja,
stanja kolnika, intenziteta prometa i vanjskih ¢imbenika. Podaci
primijenjeni u ovome istrazivanju obuhvacaju 161 dionicu
primarne cestovne mreze, u ukupnoj duljini od priblizno 1300 km.
Napredni modeli strojnog ucenja mogu se primijeniti u
identificiranju klju¢nih ¢imbenika koji utjeCu na ponderirani
indeks nesreca (engl. weighted accident index - Wi) i u razvoju
prediktivnih alata za poboljsanje sigurnosti u prometu.
Rezultati ranijih istrazivanja pokazuju kako razliciti ¢cimbenici,
uklju€ujuci uzduzni nagib, polumjer zakrivljenosti, stanje kolnika,
Sirinu trakova i ogranicenu vidljivost, utjecu narizik od prometnih
nesreca [4-6]. Modeli strojnog ucenja, osobito algoritmi slucajne
Sume (engl. Random Forest - RF) i pojacavanja gradijenta (engl.
Gradient Boosting - GB) s algoritmima XGBoost i CatBoost, sve
se CeSce primjenjuju u analizi takvih parametara zbog svoje
sposobnosti rukovanja slozenim i nelinearnim odnosima te
identificiranja najutjecajnijih varijabli [7, 8].

Sli¢ni pristupi primijenjeni su i u podruc¢ju procjene troskova
infrastrukture, gdje su se ansambl-metode strojnog ucenja
poput RF-a i boosting modela pokazale ucinkovitima u
predvidanju slozenih interakcija izmedu visestrukih ulaznih
varijabli [S]. “Istrazivanja su takoder istaknula primjenu
umjetnih neuronskih mreza (ANN) za predikciju ucestalosti
sudara, osobito kada su podaci ograniceni ili djelomitno
dostupni; medutim, interpretabilnost ovih modela i dalje je
ograni¢ena” [10]. Nekolicina nedavnih istraZivanja pokazala je
da SHAP (SHapley Additive exPlanations) analiza moze posluziti
kao dodatni alat za tumacenje rezultata vrlo preciznih modela,
pruzajuci uvid u relativnu vaznost cimbenika kao 5to su obujam
prometa, tip ceste i planinski teren [11].

Osim toga razvijeni su kompozitni indeksi i karte za predvidanje
rizika, u kojima su podaci kategorizirani na temelju razine
utjecaja i rangiranja umjesto jednostavne binarne klasifikacije
[12, 13]. Primjena tih metoda omogucila je bolje usmjeravanje
resursa i odredivanje prioriteta intervencija.

Medutim, vecina postojecih analiza provedena je u zemljama s
dobro razvijenim sustavima prikupljanja podataka. Za Republiku
Sjevernu Makedonijuiokolnuregiju trenutacno ne postoje modeli
koji integriraju lokalna ograni¢enja i manjak sveobuhvatnih
podataka [14]. Cilj ovog istrazivanja bio je popuniti navedenu
prazninu primjenom nekoliko modela strojnog ucenja (XGBoost,
RF, GB, CatBoost, LightGBM i viseslojni perceptron — MLP) uz
postupno smanjivanje broja ulaznih varijabli na temelju njihova
doprinosa ponderiranome indeksu nesreca (Wi). Visokorizi¢ne
cestovne dionice utvrdene su na temelju reprezentativnih
nacionalnih podataka.

2. Pregled literature

Istrazivanja koja se bave predvidanjem prometnih nesreca i
njihove ozbiljnosti sve ¢eSce primjenjuju napredne algoritme
strojnog ucenja i interpretabilne modele za analizu klju¢nih
utjecajnih ¢cimbenika. U ovome poglavlju saZeta su relevantna
istrazivanja koja primjenjuju napredne metode za predikciju
nesreca temeljene na stvarnim podacima, ukljucujuciinformacije
o geografskome opsegu, broju slucajeva, primijenjenim
modelima i izvedbenim metrikama.

U istrazivanju provedenome u Kini, Chen i suradnici [15] primijenili
su hibridni model MSCPO-XGBoost na skupu podataka od 13.000
slucajeva, pri ¢emu je postignut koeficijent determinacije (R?) od
0,918. Analizirali su ¢imbenike povezane s ozbiljnoScu sudara
kombinirajuci optimiranje i strojno ucenje. Iranmanesh i sur. [16]
primijenili su XGBoost, stablo odluke (engl. Decision Tree - DT) i RF
modele na podatke iz 784 slucaja nesreca na ruralnim cestama u
jednoj provinciji u Iranu, pri ¢emu je postignuta najveca vrijednost
R* od 0,873. Primjenom navedenih modela utvrdeni su dijelovi
cesta s povecanim rizikom od prometnih nesreca.

U istrazivanju u kojemu su primijenjeni podaci iz Juzne
Koreje Lee i sur. [17] primijenili su interpretativni pristup s
proSirenjem podataka na 11.689 zapisa primjenom SHAP-a za
prepoznavanje utjecaja povezanih s infrastrukturom i postigli
R® od 0,842. Mengistu i sur. [18] analizirali su 1037 slucajeva,
uklju€ujuci podatke o vozacima, cestama i okoliSu u Etiopiji,
primjenom modela XGBoost, pri temu su postigli R* od 0,863. U
oba istrazivanja transparentnost modela u objasnjenju faktora
istaknuta je kao kljucna prednost.

Alshehri i sur. [19] primijenili su modele DT i RF na skupu
podataka od 3228 nesreta u Saudijskoj Arabiji. PovrSina
ispod krivulje (engl. area under curve - AUC) iznosila je 0,78
za predvidanje smrtnosti medu dobnim skupinama i vrstama
nesreta. AUC je mjera za odredivanje ulinkovitosti nekog
modela. Osim toga model s najboljim rezultatima postigao
je preciznost od 0,81 i pouzdanost od 0,75, Sto pokazuje da
ima dobro uravnoteZenu sposobnost otkrivanja pozitivnih
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Tablica 1. Komparativni sazetak reprezentativnih istrazivanja

Istrazivanje (ref.) Regija/Opseg Zadatak Modeli Velicina Metrika
Chenisur. [15] Kina (Sirom zemlje) Regresija (ozbiljnost) MSCPO-XGBoost 13.000 R*=0,918
Iranmanesh i sur. [16] Iran (ruralne ceste) Regresija (rizik/dionice) XGBoost, DT, RF 784 R*(maks.) = 0,873
) Juzna Koreja N Interpretabilno strojno 2
Leeisur.[17] (na razini drzave) Regresija + XAl utenje + SHAP 11.689 R*=0,842
Mengistu i sur. [18] .Etlopua. . Regresija (ozbiljnost) XGBoost 1037 R?*=0,863
(na regionalnoj razini)
Saudijska Arabija Klasifikacija AUC = 0,78; preciznost =
Alshehriisur. [19] .VJ ) (rizik od nesrece sa DT, RF 3228 o p B
(vie gradova) ) o 0,81; odziv = 0,75
smrtnim posljedicama)
Ahmed i sur. [20] Novi Zeland Hibridno XGBoost, LIME 3146 R® = 0,839; AUC = 0,87
(urbane sredine) (regresija + klasifikacija)
- Portugal - Lisabon Hibridno B
Alpalhao i sur. [22] (urbane sredine) (Velika Britanija) GB 28.649 RMSE = 0,332

slu¢ajeva. Ahmed i sur. [20] analizirali su 3146 incidenata
na Novome Zelandu primjenom objasnjivih modela kao Sto
su XGBoost i metodu LIME (engl. Local Interpretable Model-
Agnostic Explanations), pri ¢emu je postignut R* od 0,839.
Najbolji klasifikacijski model postigao je AUC od 0,87, Sto
istiCe njegovu dosljednu ucinkovitost u predvidanju razina
ozbiljnosti nesreca. Vizualizacija utjecaja ¢imbenika dodatno
ilustrira prakti¢nu primjenjivost tih modela.
Megnidio-Tchoukouegno i Adedeji [21] upotrijebili su bazu
podataka STATS19, koja sadrzava 45.000 zapisa iz Ujedinjene
Kraljevine. Primijenili su modele GB i RF, pri cemu je najbolji
model postigao vrijednost R* od 0,881. Alpalhdo i sur.
[22] analizirali su 28.649 slucajeva iz Lisabona primjenom
hibridnoga regresijskog/klasifikacijskog modela GB, s
korijenom srednje kvadratne pogreske (RMSE) od 0,332.
Ta istraZivanja posebno su vazna za urbana podrudja, gdje
dostupnost podataka omogucuje sloZeno modeliranje. U
istrazivanju koje su proveli Guido i sur. obradeno je 1349
slucajeva iz regije Cosenze u ltaliji primjenom XGBoosta,
SVM-a i RF-a. Najvisi postignuti R* iznosio je 0,896, a modeli
su primijenjeni za analizu broja ukljuc¢enih vozila i obiljezja
ceste. Pomocu geoprostorne analize i strojnog ucenja pokazali
su primjenjivost modela u ruralnim okruzjima.

Xiao i Duan [24] izradili su okvir dubokog ucenja za predvidanje
viSe zadataka primjenjujuci ulazne podatke iz 10.563 slucaja,
pri Cemu je postignuta vrijednost R* od 0,894 i srednja
apsolutna pogreska (MAE) od 0,243. U svojemu istrazivanju
proveli su detaljnu analizu SHAP kako bi vizualizirali doprinos
svake varijable. U analizi ozbiljnosti sudara kombinirani su
interpretabilnost i viSefunkcionalnost.

U tablici 1. dan je sazet pregled reprezentativnih istrazivanja
(regija/opseg, zadatak, modeli, velicina uzorka i metrike)

Kljucni doprinos ovog istrazivanja ogleda se u sustavnoj
usporedbi ucinkovitosti modela u predvidanju ponderiranog
indeksa nesrece (Wi) te razvoju metodologije za rangiranje
parametara na temelju kombiniranih rezultata vaznosti znacajki.
Osim toga rezultati pruzaju prakticne smjernice za identifikaciju
visokorizicnih dionica unutar ciljnih cestovnih mreza.

3. Pregled podataka

3.1. Opce informacije o cestovnoj mrezi

Cestovna mreza Republike Sjeverne Makedonije proteze se na
ukupno 14.475 km i obuhvaca autoceste, regionalne i lokalne
ceste [25]. Primarna cestovna mreza, duga 897 kilometara,
kljutna je dionica nacionalne i transeuropske prometne
infrastrukture [26]. Ukljucuje autoceste, brze ceste i dvosmjerne
ceste koje osiguravaju glavne prometne veze diljem zemlje i sa
susjednim zemljama.

radi lakSe i transparentnije usporedbe medu istrazivanjima i Legenda:.
metodoloski dosljedne procjene prijavljenih nalaza. =1
Nadovezujuci se na navedena istrazivanja, u ovome istrazivanju ="
primijenjeno je Sest modela strojnog ucenja (CatBoost, GB,

XGBoost, RF, LightGBM i MLP) treniranih u jednakim uvjetima. Slika 1. Pregled cesta A-kategorije
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Istrazivanje je obuhvatilo primarne ceste A1, A2, A3 i A4, koje
se razlikuju po svojim tehnickim svojstvima i geometrijskim
elementima. Kao Sto je to prikazano na slici 1., iako sluzbena
duljina primarne cestovne mreze iznosi 897 kilometara, analiza
obuhvaca priblizno 1300 kilometara zbog zasebnog razmatranja
dvaju cestovnih smjerova s odijeljenim kolnicima (autoceste).
Taj pristup omogucuje detaljniju i objektivniju procjenu utjecaja
razlicitih cimbenika na sigurnost cestovnog prometa.

3.2. Opis i obrada podataka

Kombiniranjem vremenske kategorizacije i klasifikacije prema
karakteristikama dobiva se sveobuhvatan i sustavan pristup
obradi podataka. Vremenska kategorizacija istie promjene
tijekom godina, dok klasifikacija prema karakteristikama
omogucuje precizno razumijevanje uloge i utjecaja svakog
pojedinog cimbenika. Podaci su obradeni upotrebom alata
Geografskoga informacijskog sustava (GIS), statistickih tehnika i
metoda strojnog ucenja te su identificirani prostorni i vremenski
trendovi.

Konacna analiticka baza podataka obuhvata 161 cestovnu
dionicu (1300 km) s potpunim zapisima za razdoblje izmedu
2014, i 2023. Prije izrade modela svi su slojevi ponovno
projicirani na elipsoid WGS 84, prostorno povezani prema
kilometarskim oznakama i provjereni zbog eventualnih
dupliciranih identifikatora.

Karakteristike ceste

Ta kategorija ukljuCuje razlicite geometrijske i funkcionalne
parametre kao Sto su ograni¢enja brzine, zakrivljenost trase,
radijusi krivulja, uzduzni nagibi i nadmorska visina. Analizirana
su i bofna opterecenja u zavojima, zaustavni vidni razmak,
hrapavost kolnika, dubina kolotraga, koeficijent povrsinskog
trenja te indeks stanja kolnika (PCl). Ukljuceni su i podaci o
gusto€i na raskrizju, mostovima i vijaduktima te o stanju
vertikalnog i horizontalnog znakovlja [27, 28].

Karakteristike prometa

Intenzitet prometa izraZzava se godisnjim prosjekom dnevnog
prometa (engl. Annual Average Daily Traffic - AADT) na temelju
automatskog brojanja prometa s fiksnih i mobilnih uredaja.
Pomocu tog parametra moguce je analizirati utjecaj opsega
prometa na vjerojatnost nesreca [29].

Karakteristike koje se odnose na okoli$

Klimatski parametri obuhvacaju prosjecne i ekstremne godisnje
vrijednosti padalina i temperature, prikupljene tijekom deset
godina s odgovarajuih meteoroloskih stanica. Podaci su
obradeni geoprostornim metodama kako bi se osigurala
pokrivenost visoke rezolucije na razini pojedinacnih cestovnih
dionica [30].

Podaci o prometnim nesrecama

UCestalost i prostorna raspodjela prometnih nesreca analizirani
su pomocu indeksa Wi, koji uzima u obzir i broji ozbiljnost nesreca.
Nesrece sa smrtnim posljedicama, nesrece s ozljedama i nesrece
samo s materijalnom Stetom ponderirane su s vrijednostima 85,
10 i 1, nakon Cega je rezultat normaliziran u odnosu na duljinu
cestovne dionice. Tgj indeks sluzi kao klju¢ni pokazatelj za
usporedbu razina sigurnosti razli¢itih cestovnih dionica [31].
Kontrola kvalitete ukljuCivala je imputaciju manje od 3 %
nedostajucih kontinuiranih vrijednosti s medijanom svake
varijable, kodiranje kategorickih pokazatelja jednim korakom
i standardizaciju z-vrijednosti svih  kontinuiranih  ulaza.
Geometrijski, prometni i inventarski slojevi preuzeti su sa
sluzbenog WebGlIS portala Javnog poduzeca za drzavne ceste, Cime
se osiguravaju dosljednost mjerenja i atribuiranje. Dodatak B
pruza potpuni popis definicija varijabli i formula sloZenih indeksa.

3.3. Statisticki saZetak skupa podataka

U sklopu deskriptivne analize primijenjen je podskup za ucenje,
u kojemu je 80 % podataka normalizirano na raspon od O do 1,
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Slika 2. Normalizirani kutijasti dijagram ulaznih varijabli i indeksa Wi: skup za ucenje
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Slika 3. Normalizirani kutijasti dijagram ulaznih varijabli i indeks Wi: testni skup

¢ime su istaknuti relativni odnosi medu ulaznim varijablama
i izlaznim parametrima (Wi). Na slici 2. mogu se uociti izrazeni
interkvartilni rasponi kod vecine varijabli, dok izdvojene tocke
oznatavaju cestovne dionice s naglasenim odstupanjima od
uobicajenog obrasca, posebno u slutajevima Wi-ja, PGDS-a i
PCl-ja.

Preostalih 20 % podataka formiralo je testni podskup, obraden
istim postupkom normalizacije. Drugi dijagram pokazuje da
raspodjele zadrzavaju oblik i Sirinu interkvartilnih raspona
opazenih u skupu za ucenje, Sto potvrduje da je podjela podataka
reprezentativna i da validacijski postupak ne uvodi sustavna
odstupanja u raspodjeli vrijednosti.

Na slici 3. prikazana je distribucija varijabli u testnome podskupu,
Sto omogucuje izravnu usporedbu s podacima za ucenje.
Dosljednost izmedu skupa za ucenje i testnog skupa temelj je za
vjerodostojnu procjenu opée upotrebljivosti razvijenih modela.
Razlike u duljini kutijastih dijagrama i broju izdvojenih vrijednosti
kod pojedinih varijabli upucuju na njihov doprinos varijabilnosti
sigurnosnih uvjeta na promatranim cestovnim dionicama.

4. Metodoloski pristup za razvoj modela
predvidanja ponderiranog indeksa nesreca
(Wi)

Za razvoj pouzdanog i interpretabilnog modela za predvidanje
ponderiranog indeksa nesreca (Wi) primijenjen je strukturirani
postupak koji obuhvata sedam koraka koji ukljuCuju odabir
modela, podeSavanje, optimiranje znacajki i procjenu. Takav
pristup jamci postupan razvoj strukture modela i ulaznih

Odaberite
vrhunske
modele

Pocetni

Podesavanje

zaslon PEIE I ELE!

Utjecaj
i smanjenje
znacajki

znacajki, uz pozorno odvajanje istrazivackog dijela analize od
procesa validacije. Tijek rada prikazan je na slici 4.

Pocetni probir modela

Provedena je pocetna usporedba devet razlicitih modela
strojnog ucenja. To ukljucuje linearne modele, modele temeljene
na DT-u, boosting metode, modele temeljene na jezgri (kernel)
i neuronske mreze. Ta usporedba omogucila je prepoznavanje
algoritama koji pokazuju obecavajuci potencijal predvidanja na
temelju opcih trendova R* i metrika pogreske [32, 331.

Odabir modela

Na temelju preliminarnih rezultata modeli koji su imali R* vei
od 0,50 smatrani su dovoljno pouzdanima za ukljucivanje u
formalni proces validacije.

Podesavanje hiperparametara

Za svaki odabrani model provedeno je 20-iterativno nasumicno
pretrazivanje na 80-postotnome podskupu za treniranje kako
bi se identificirali prikladni hiperparametri. U tablici 2. prikazani
su hiperparametri nakon podeSavanja, primijenjeni u evaluaciji
80/20, pri ¢emu su sve prikazane metrike izrac¢unane na
odvojenome (held-out) testnom skupu. U svim je postupcima
koriStena fiksna vrijednost parametra random_state = 42 kako
bi se osigurala ponovljivost rezultata.

Odabir znacajki i analiza pouzdanosti
Puni skup od 23 ulazna parametra postupno je smanjivan
primjenom SHAP-a i metoda temeljenih na permutacijama, pri

Treniranje
/testiranje
80/20

Integracija KEnaEn

model

(ponderirani
SHAP)

Slika 4. Linearan tijek rada za razvoj modela predvidanja ponderiranog indeksa nesreca (Wi)
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Tablica 2. Konacni hiperparametri za svaki algoritam (podjela 80/20)

Riste Ristov, Slobodan Ognjenovic, Zlatko Zafirovski

Model Konacni hiperparametri

XGBoost (konacni prediktor)

n_estimators = 100; max_depth = 4; learning_rate = 0,3 (default); random_state = 42

Pojacavanje gradijenta (GB)

n_estimators = 100; max_depth = 4; learning_rate = 0,1 (default); random_state = 42

Slucajna Suma (RF)

n_estimators = 100; max_depth = 4; min_samples_split = 2; random _state = 42

CatBoost (CB)

iterations = 1000; depth = 6; learning_rate = 0.03; random _state = 42

LightGBM (LGBM)

n_estimators = 300; learning _rate = 0,03; max_depth = 4; min_child_samples = 10; random _state = 42

ViSeslojni perceptron (MLP)

hidden_layer_sizes = (100, 50); activation = “relu”; alpha = 0,0005; max_iter = 1000; random_state = 42

¢emu je ucinkovitost pracena nakon svakog uklanjanja. Konacni
odabir ukljucivao je samo najutjecajnije znacajke za svaki model.
Stabilnost odabira znacajki provjerena je analizama temeljenima
na korelaciji razli¢itih random seed inicijalizacija i varijanti
modela [34, 35]. Vaznost varijabli odredena je permutacijskim
pristupom, pri ¢emu se biljezilo smanjenje R* nakon nasumi¢nog
mijeSanja svake varijable.

Treniranje i testiranje (podjela 80/20)

S optimiranim hiperparametrima i smanjenim skupom znacajki,
svaki je model treniran na 80 % podataka i testiran na preostalih
20 %. To je omogucilo nepristrane procjene performansi,
temeljene iskljucivo na odvojenome (held-out) testnom skupu
[35, 36]. Performanse su prikazane kao R* (%), MAE i RMSE za
testni skup kaji nije primijenjen za treniranje.

Integracija za tumacenje (bez ansambla za predvidanje)

Nije primijenjen zaseban prediktivni ansambl, a integracija
je posluzila samo za dobivanje robusnog rangiranja medu
modelima ponderiranim SHAP-om, pri ¢emu je doprinos svakog
modela proporcionalan njegovoj vrijednosti R* [39].

Formulacija konacnih modela

Za konacni model predvidanja odabran je XGBoost s 15 ulaza
kao algoritam s najviSim performansama u evaluaciji 80/20,
a sve metrike prikazane su na temelju validacije izvan uzorka.
Eventualno preoblikovanje modela na cijelome skupu podataka
izvodi se isklju¢ivo za primjenu na novim cestovnim dionicama,
dok svi prijavljeni rezultati ostaju temeljeni na evaluaciji 80/20
[46].

Ta metodologija pruza koherentan i ponovljiv okvir za
predvidanje indeksa Wi. Svaki korak, od pocetnog testiranja
modela do konacne implementacije, bio je pozorno strukturiran
kako bi se osigurali transparentnost, robusnost i znanstvena
strogost. Primjena odabranih modela uz odgovarajuce postupke
podedavanja i validacije rezultirala je alatom koji je tocan i
primjenjiv u praksi za procjenu sigurnosti cestovnog prometa.

5. Analiticka procjena ucinkovitosti prediktivnih
modela

Evaluacija razli¢itih pristupa strojnog ucenja za predvidanje
ponderiranog indeksa nesreca prikazana je u fazama. Evaluacija
obuhvaca R? vrijednosti modela tijekom treniranja s punim

skupom podataka, testiranje primjenom podjele 80/20, odabir
optimalnih parametara i razvoj konacnog prediktivnog modela.

5.1. Indikativna evaluacija treniranja i probir modela

U pocetnoj fazi analize svi odabrani modeli trenirani su
primjenom cijelog skupa podataka. Taj pristup omogucio je
brzu procjenu mogucnosti razlicitih metoda za prediktivno
modeliranje ponderiranog indeksa nesreca Wi [43, 45]. Analiza
je ukljucivala razlicite matematicke pristupe kao Sto su linearni
modeli, modeli temeljeni na stablima odluke (DT), boosting
modeli, metode temeljene na jezgrenim funkcijama i umjetne
neuronske mreze (ANN). Tih devet modela odabrano je na
temelju njihove kompatibilnosti s prirodom dostupnih podataka
i njihove dokazane primjenjivosti u prethodnim istrazivanjima
sigurnosti cestovnog prometa [6, 81.

Rezultati treniranja modela odrazavaju njihov opceniti potencijal
i primijenjeni su za prepoznavanje onih prikladnih za daljnju
analizu. Kriterij odabira bilo je postizanje vrijednosti R* vece
od 50 %, Sto se smatralo najnizim pragom za obuhvacanje
varijabilnosti u Wi.

Slika 5. ilustrira pocetne rezultate svih devet modela, prikazane
kroz metrike R* i RMSE. Modeli s vrijednostima R?* iznad 50 %
smatrani su prikladnima za modeliranje te vrste podataka i
zadrzani za daljnje potvrdivanje.

R2[%]

Modeli strojnog ucenja

Slika 5. Poéetne vrijednosti R* i RMSE za devet prediktivnih modela

Na temelju pocetne analize odabrano je Sest modela, CatBoost
[37], MLP, XGBoost [47], LightGBM [38], GB i RF [£0], za daljnju
evaluaciju primjenom strukturiranog postupka opisanog u
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metodologiji. Isklju¢eni modeli nisu zadovoljili prag prediktivne
sposobnosti i zato nisu primijenjeni u daljnjim koracima
optimiranja.

5.2. Definiranje optimalnog broja utjecajnih
parametara

Provedena je kombinirana analiza primjenom vrijednosti SHAP
i vaznosti permutacije kako bi se razjasnio utjecaj pojedinacnih
parametara na Wi. Obje metode omogucuju transparentno
tumacenje uloge svake ulazne varijable u konacnome
predvidanju, Sto je klju¢no za donosenje prakticnih zakljucaka i
definiranje formula za predvidanje.

SHAP vrijednosti potjeCu iz teorije igara i izrazavaju doprinos
svakog parametra odredenome predvidanju. Te vrijednosti
temelje se na principu pravedne raspodjele utjecaja na rezultat
modela. SHAP omogucuje detaljan uvid u to koji parametriimaju
najvedi utjecaj te je li taj utjecaj pozitivan ili negativan, ovisno o
smjeru i veli¢ini vrijednosti [42-44]. rijednost parametra imoze
se izracunati na sljedeci nacin:

®= Y

ScF\{i}

G
|F|!

(soli)-r(9)] @

gdje @, predstavlja vrijednost SHAP za parametar i, 5 podskup
preostalih parametara, a f{S) rezultat modela za ulazni skup S.

Utjecaj parametra definiran je razlikom u vrijednostima R?, izraz (2):

IrT‘lportancei = Rzoriginal - Rzpermuted,i (2)
pri cemu je R? . objasnjena varijanca izvornog modela a
R? muea; Vrijednost dobivena nakon permutacije vrijednosti
parametra i Sto je veca razlika, to je parametar utjecajniji na
predvidanja modela.

Za pet od Sest modela (GB, RF, CatBoost, LightGBM i XGB)
upotrijebljen je isti SHAP objasnjivac temeljen na paketu
TreeExplainer, dok je za MLP model primijenjen objasnjivac
KernelExplainer zbog svoje strukture neuronske mreze.

Na slici 6. prikazana je normalizirana vaznost svakog od 23
parametra u usporedbi medu modelima. Brojevi u kvadratima
apsolutne su SHAP vrijednosti zaokruzene na dvije decimale, dok
boja vizualno oznacava relativnu vaznost na skali od O do 1. Ta
vizualizacija omogucuje izravnu usporedbu utjecaja parametara u
svim modelima; PGDS, LIMIT i K.Int. PT nedvojbeno predstavljaju
najdosljednije utjecajne parametre. Istodobno parametri poput
KON.NAK., H sign i Max_Temp pokazuju nizu ili selektivnu vaznost
samo u pojedinacnim modelima. Za konacno rangiranje parametara
SHAP vrijednosti dobivene iz Sest modela ponderirane su njihovim
pripadaju¢im vrijednostima R’ iz analize na skupu podataka
podijelienom u omjeru 80/20. Te su vrijednosti navedene u tablici 3.

Tablica 3. Vrijednosti u pogledu uéinkovitosti R primijenjene kao
tezine u konacnome SHAP izracunu

Osim toga SHAP metodologija omogucuje neizravno . .
g . L 8! gucyy N Model Vrijednost R* Tezina
promatranje interakcija izmedu parametara putem njihova — : -
kumulativnog ucinka na rezultat modela. Pojacavanje gradijenta (GB) 0,5381 0,225
Za provjeru tih rezultata provedena je analiza vaZnosti Slucajna suma (RF) 05126 0214
permutacijama. Taj pristup procjenjuje vaznost svakog CatBoost (CB) 0,4664 0,195
parametra mjerenjem promjene u ucinkovitosti modela kada LightGBM (LGBM) 0,3447 0,144
se vrijednosti odredenog parametra zamijene permutiranim N
. ) . & p. ) ) P o Viseslojni perceptron (MLP) 0,1607 0,067
vrijednostima. Ako ta zamjena uzrokuje znatno smanjenje
preciznosti, tada se parametar smatra vrlo utjecajnim [40]. XGBoost (XGEB) 01043 0,044
10 o
GB 0 0.62 0.31.000 043 | 0.15 | 0.27 | 0.56 | 0.00 | 0.24 | 0.08 | 0.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 §
()
08 =
RF 0.64 | 0.58 | 0.56 | 0.50 | 0.44 | 0.43 | 0.42 | 0.40 | 0.38 | 0.36 | 0.34 | 0.30 | 0.27 | 0.26 | 0.25| 0.25 | 0.21 | 0.19 | 0.18 | 0.00 | 0.00 | 0.00 %\
&
] CB-0.58 | 0.48 | 0.50 | 0.56 | 0.25 | 0.15 | 0.18 | 0.07 | 0.00 | 0.24 | 0.34 | 0.00 | 0.00 | 0.22 | 0.26 | 0.00 | 0.00 | 0.23 | 0.16 | 0.22 | 0.13 | 0.40 | 0.09 06 :
g
=2 |GB SEEN 0.66 0.65 | 0.00 | 0.47 | 0.32| 0.30 [ 0.41 [ 0.10 | 0.19 | 0.22 | 0.11 | 0.00 | 0.14 | 0.00 | 0.36 | 0.31 | 0.00 | 0.20 | 0.00 | 0.00 | 0.24 on 8
2
MLP 0.31 | 0.61 [ 0.55 | 0.24 | 0.17 | 0.28 | 0.59 | 0.10 | 0.07 | 0.07 | 0.19 | 0.03 | 0.22 | 0.08 | 0.00 | 0.10 | 0.04 | 0.03 | 0.00 | 0.55 | 0.19 _g
-02 N
T
XGB U8 0.73 | 0.40 | 0.52 | 0.28 | 0.16 | 0.35 | 0.14 | 0.55 | 0.08 | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | 0.00 | 0.08 | 0.04 | 0.00 g
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Slika 6. Normalizirane vrijednosti vaznosti znacajki prema SHAP metodi za sve modele
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Slika 7. Vaznost znacajki (ponderirane SHAP vrijednosti)

Nadalje, kako bi se rezultati svih modela integrirali u sinteticku
procjenu, za svaki parametar izraunana je ponderirana SHAP
vrijednost na sljedeci nacin:
5= W, S+ W, S, ++ W S (3)
Izraz (3) predstavlja zbroj produkata SHAP vrijednosti za
odredeni parametar j, dobivenih iz svakog od Sest modela (S,
5/2, 5/6) i njihovih pripadajucih tezina (w,, w,, .... w,), koje su
odredene proporcionalno to¢nosti vrijednosti R* svakog modela.
Time se dobiva SHAP vrijednost koja integrira sve modele u
jedinstvenu metriku vaznosti.

Na slici 7. prikazane su dobivene vrijednosti utjecaja za svaki
parametar, izrazene pomocu ponderirane SHAP vrijednosti. Taj
stupcasti grafikon omogucuje rangiranje parametara prema njihovoj
ukupnoj vaznosti kroz sve modele. NajviSe vrijednosti zabiljezene
su za PGDS, LIMIT i Kint. PT, Sto upu€uje na njihov dosljedan i
dominantan utjecaj na predvidanja u svim modelima. Suprotno tome
parametri poput KON.NAK.,, Max_Temp i H sign imali su najnize
ponderirane SHAP vrijednosti, Sto upucuje na to da je njihov utjecaj
na izlaznu varijablu bio minimalan ili ogranicen na nekoliko modela.
Tgj dijagram omogucuje vizualnu procjenu klju¢nih ¢imbenika za
buduce analize i potencijalno smanjenje broja varijabli.

Radi daljnje analize parametri su rangirani prema ponderiranim
SHAP vrijednostima kako bi se postupno smanjio broj ukljucenih
varijabli. Primjenom tog pristupa moguce je odrediti najutjecajnije
parametre bez oslanjanja na tradicionalnu metodu postupne
eliminacije, zahvaljujui integriranoj evaluaciji svih modela.

5.3. Optimiranje broja parametara i odabir
najpreciznijeg modela

U toj fazi Sest modela procijenjeno je s obzirom na njihovu
sposobnost predvidanja indeksa Wi, s posebnim teziStem

na utjecaju smanjenja broja ulaznih parametara na tocnost
predvidanja (tj. R?). Analiza je bila temeljena na podjeli podataka
u omjeru 80/20, s parametrima koji su sekvencijalno uklonjeni
prema njihovim unaprijed definiranim rangovima vaznosti [41].
Za svaku iteraciju odabire se podskup najrelevantnijih znacajki,
nakon Cega slijedi treniranje i testiranje modela za istu podjelu.
MLP model ukljucivao je standardizaciju ulaza unutar pipelinea,
dok je LightGBM model upotrebljavao posebno podeSene
hiperparametre za kontrolu sloZzenosti modela. Upotrijebljen
je fiksni random_state postavljen na 42 kako bi se osigurala
ponovljivost rezultata.

Na slici 8. prikazana je varijacija vrijednosti R* za razli¢it broj
parametara za svaki model. Grafikon omogucuje vizualnu
usporedbu osjetljivosti i robusnosti modela na smanjenje
dimenzionalnosti. Vazno je istaknuti da neki modeli poput
GB-a odrzavaju stabilnu razinu ucinkovitosti kroz Siri raspon
parametara, dok drugi poput MLP-a pokazuju nagle varijacije,
osobito pri smanjenome broju ulaza.

U tablici &. prikazana je maksimalna R* vrijednost postignuta
za svaki model, zajedno s odgovaraju¢im brojem parametara,
poredanima silaznim slijedom prema to¢nosti.

Tablica 4. Najvea vrijednost R” (%) i odgovarajuéi broj parametara za

svaki model
Model R* [%] Broj parametara

XGBoost 65,05 15
GB 57,13 7
MLP 56,39 9
LightGBM 55,21 9
CatBoost 52,06 7
RF 48,40 6
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Slika 8. Varijacija R (%) s brojem ulaznih parametara za sve modele

Rezultati su pokazali da je XGBoost najucinkovitiji model za
daljnju upotrebu, s najviSom postignutom vrijednoséu R
Unato¢ manjemu broju parametara, GB i CatBoost osiguravaju
konkurentnu preciznost i stabilnost, Sto ih ¢ini vrlo u¢inkovitima
kadaje koli¢ina podataka ograni¢ena. MLP i LightGBM ostvarili su
usporedive vrijednosti R?, no samo pod odredenim parametrima
i s manjom dosljednoscu kroz cijeli raspon.

Ti rezultati upucuju na to da odabir odgovarajuteg modela i
broja parametara moze znatno poboljsati tocnost predvidanja,
¢ak i ako se ne oslanja na cijeli skup ulaznih varijabli. Ta analiza
dodatno omogucuje uskladivanje dimenzionalnosti i stabilnosti
modela, Sto je klju¢no za primjenu u praksi.

5.4, Testiranje i validacija

Proces testiranja i validacije klju¢an je za procjenu stabilnosti,
tocnosti i primjenjivosti razvijenog prediktivnog modela za Wi
u stvarnim uvjetima. Kao 5Sto je to detaljno opisano u ovome
odjeljku, za kvantificiranje tocnosti predvidanja primijenjeno je
testiranje temeljeno na regresiji, dok je validacija temeljena na
klasifikaciji primijenjena za ispitivanje sposobnosti modela da
identificira i rangira dionice s vecim rizikom kako bi se podrzale
prakti¢ne odluke o intervencijama sigurnosti na cestama.

5.4.1. Testiranje (regresija, 80/20)

Za evaluaciju modela XGBoost, treniranog na 15 najutjecajnijih
parametara prema SHAP vrijednostima, primijenjena je podjela
podataka od 80 % za treniranje i 20 % za testiranje. Usporedba
“predvidenog i stvarnog” s idealnom linijom y = x omogucuje

izravnu vizualnu procjenu podudarnosti izmedu rezultata
modela i promatranih vrijednosti Wi (slika 9.).
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Slika 9. Usporedba predvidenih i stvarnih vrijednosti za Wi pomocu
XGBoosta s podjelom podataka od 80 % za treniranje i 20 % za
testiranje

Vecina tocaka nalazila se u neposrednoj blizini idealne
linije, uz ocekivano, ali ograni¢eno rasprsenje u ekstremnim
vrijednostima. Kvantitativno, R* = 0,6505 upucuje na to da se
znatan dio varijance Wi moze pripisati modelu, dok vrijednosti
MAE =2,72 i RMSE = 3,63 potvrduju umjerene vrijednosti
apsolutne pogreske i korijena srednje kvadratne pogreske. Zato
ti rezultati podupiru primjenu modela XGBoost kao pouzdane
osnove za operativnu procjenu rizika na razini dionica.
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5.4.2. Validacija (klasifikacija za odredivanje prioriteta
rizika)

Osim preciznih regresijskih predvidanja za prakti¢nu primjenu
klju€no je da model da prioritet dionicama s najvecim rizikom
na vrhu liste prioriteta. Regresijski model prilagoden je
klasifikacijskoj postavci s pragom Wi = 10,130 (prevalencija
= 20,5 %) kako bi se procijenio taj aspekt, a ucinkovitosti su
procijenjene kroz 100 bootstrap iteracija. Primjena metrika
prilagodenih neuravnotezenim klasama (preciznost/odziv pri
fiksnim stopama pregleda, PR-AUC) i dijagnostika usmjerenih
na rangiranje (dobici/lift) metodoloski je primjeren za zadatke
odredivanja prioriteta u analitici sigurnosti cestovnog prometa
i uskladen je s nedavnim primjenama strojnog ucenja u
modeliranju rizika od sudara [42, 43]. Agregirani rezultati
(medijani s 95 % Cl) saZeti su kako slijedi:

- AUROC: 0,692 [0,519, 0,834]

- PR-AUC: 0,420[0,229, 0,696]

- preciznosti pri 10 %: 0,500 [0,250, 0,750]

- odziv pri 10 %: 0,286 [0,143, 0,429]

- povecanje ucinkovitosti (lift) pri 10 %: 2,857 [1,429, 4,286]

Na slici 10. prikazana je krivulja ucinka (gains). Pregledom samo
prvih 10 % cestovnih dionica primjenom ocjena rizika modela
identificirana je otprilike polovina svih stvarno visokorizi¢nih
dionica. To oznacava znatno poboljsanje u odnosu na slucajan
odabir i jasan pokazatelj operativne korisnosti za rangiranje.
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Slika 10. Krivulja u¢inka za prepoznavanje dionica s vrijednoscu Wi =
10, 130 (bootstrap medijan, 100 iteracija)

Na slici 11. prikazana je krivulja povecanja koja kvantificira
prednost u odnosu na slucajan izbor. U prvih 10 % rangiranih
dionica lift iznosi priblizno 2,9, 5to upucuje na to da model
koncentrira znatno veéi udio “pozitivnih” slucajeva pri
vrhu liste, Sto je upravo ono Sto se olekuje od ucinkovite
prioritizacije.

Sveukupno, validacija temeljena na klasifikaciji pokazuje da
model daje tocna predvidanja za Wi te ucinkovito rangira dionice
prema riziku. U kombinaciji s regresijskim testovima ti nalazi
pruzaju uvjerljivu potvrdu da je model primjenjiv u sustavnome
planiranju sigurnosti prometa.
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Slika 11. Krivulja poveanja za procjenu relativnog ucinka u
rangiranome odabiru (bootstrap medijan, 100 iteracija)

6. Rasprava o rezultatima
6.1. Analiza rezultata

Analiza je obuhvatila Sest modela (XGBoost, CatBoost, GB,
RF, LightGBM i MLP) i provedena je u sklopu dva pristupa.
Evaluacija temeljena na vrijednosti R* (R?, MAE i RMSE)
provedena je primjenom podjele 80/20 na treniranje i testni
skup, uz objasnjivost modela SHAP-om i analizom vaznosti
permutacijom. Utjecaj varijabli izratunan je za svih Sest
modela i ponderiran prosjekom s tezinama proporcionalnima
R* vrijednosti svakog modela prema evaluacijskome protokolu
podjele 80/20 (GB: R* = 0,5381, tezina = 0,225; RF: R* = 0,5126,
tezina=0,214; CatBoost: R* = 0,4664, teZina = 0,195; LightGBM:
R? = 0,3447, tezina = 0,144; MLP: R* = 0,1607, tezina = 0,067;
i XGB: R* = 0,1043, tezina = 0,044). Ta ponderirana agregacija
SHAP vrijednosti stvara jedinstvenu rang-listu koja integrira sve
modele, pri ¢emu je stabilna i manje osjetljiva na specifi¢nosti
pojedinog algoritma.

Dobivene rang-liste pokazuju da su PGDS (AADT), LIMIT i K.Int.
PT. bili najdosljednije utjecajni ¢imbenici, pri cemu su PCl i Ave _
Inc medu vodecim infrastrukturnim/geometrijskim varijablama.
Za razliku od njih, KON.NAK., H sign i Max_Temp pokazuju
selektivnu ili nisku vaznost. Mehanisticki gledano, izlozenost i
radni uvjeti povecavaju osnovni rizik, dok ga uvjeti na kolniku i
geometrija moduliraju trenjem, stabilnosti i vidljivosti.

Analiza ablacijske regresije (R* kao funkcija broja ulaznih varijabli)
ukazala je na ocitu ravnotezu izmedu kompaktnosti modela
i to¢nosti predvidanja. Vréne vrijednosti R? (%) i optimalan broj
ulaznih varijabli po modelu jesu sljedece: 65,05 (15 varijabli) za
XGBoost, 57,13 (7 varijabli) za GB, 56,39 (9 varijabli) za MLP,
55,21 (9 varijabli) za LightGBM, 52,06 (7 varijabli) za CatBoost
i 48,40 (6 varijabli) za RF. Time je dokazano da se najbolja
generalizacija postize primjenom reducirane, ali informativne
podskupine varijabli, za razliku od primjene cijelog skupa ulaznih
podataka.

Pri klasicnoj 80/20 podjeli podataka za validaciju XGBoost
[47] s 15 ulaznih varijabli, odabranih kombinacijom SHAP i
permutacijske vaznosti, postigao je R* = 0,6505, MAE = 2,72
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i RMSE = 3,63, pri cemu su testne tocke bile koncentrirane
oko idealne linije y = x, Sto potvrduje snazno slaganje izmedu
predvidenih i opazanih vrijednosti Wi.

Za operativnu validaciju (prioritizaciju) izlaz regresijskog
modela prilagoden je klasifikacijskome scenariju s pragom Wi
= 10,130 (prevalencija = 20,5 %) te saZet preko 100x bootstrap
iteracija. Rezultati su bili sljedeci: AUROC = 0,692, PR-AUC
= 0,420, preciznost pri 10 % = 0,500, odziv pri 10 % = 0,286, i
povecanje ucinkovitosti pri 10 % = 2,857. Ti rezultati upucuju
na to da je pregledom samo gornjih 10 % dionica obuhvacen
znatno vedi udio stvarno visokorizi¢nih segmenata u usporedbi
s nasumicnim odabirom (Sto je vidljivo i iz krivulja dobitka/
povecanje ucinkovitosti).

Ukratko, 15 ulaznih varijabli dovoljno je za stabilnu generalizaciju
u modelu XGBoost, dok GB i CatBoost ostvaruju konkurentne
performanse ¢ak i s manjim brojem ulaza, to je posebno korisno
u uvjetima ogranicenih podataka. Osim Sto model predvida Wi s
visokim slaganjem izvan skupa za ucenje (R?), pristup ucinkovito
stavlja segmente s najvecim rizikom na vrh liste za inspekciju
i intervenciju. Tumacenje se temelji na validiranim rezultatima
izvan skupa za uCenje. Rezultati dobiveni na cjelokupnome
razvojnome skupu primijenjeni su iskljucivo u istrazivacke svrhe,
a ne za formalnu evaluaciju.

6.2. Usporedba s prethodnim istrazivanjima

Validirani rezultati predikcije Wi prema podjeli 80/20 (XGBoost,
15 ulaznih varijabli: R* = 0,6505, MAE = 2,72, RMSE = 3,63)
uskladeni su s aktualnim praksama koje preferiraju ansamble
temeljene na stablima i isticu objasnjivost modela putem
SHAP-a. U regresijskim istrazivanjima sazetima u tablici 1.
prijavljene vrijednosti R* obi¢no se krecu oko 0, 84 do 0,92 za
nacionalne ili urbane kontekste s vecim i bogatijim skupovima
podataka [15, 17, 18, 21, 23]. U hibridnim ili interpretacijski
usmjerenim okruzjima s teziStem na urbanim sredinama
rezultati se uglavnom krecu oko R* = 0,83 do 0,87 [20]. Te su
razlike ocekivane i rezultat su razlike u ciljevima (dok mnoga
istrazivanja predvidaju ozbiljnost nesreca, ovo istrazivanje
modelira kontinuirani Wi), prostorne razlucivosti i opsega
atributa. Zato su usporedbe ponajprije metodoloske prirode, s
teziStem na simultanoj primjeni boostinga i objasnjive umjetne
inteligencije (XAl), a ne na izravnoj broj¢anoj usporedivosti.

U sklopu klasifikacijskih i hibridnih pristupa prethodna
istraZivanja obic¢no su izvjeStavala o metrikama AUC, PR-AUC,
preciznosti i odzivu, pri ¢emu se AUC kretao otprilike izmedu
0,78 i 0,87, ovisno o specifitnome zadatku i skupu podataka
[19, 20]. Radi operativne usporedivosti u ovom je istrazivanju
provedena i provjera prioritizacije: pri pragu Wi = 10,130
(prevalencija = 20,5 %; 100 x bootstrap iteracija) dobivene su
sljedece metrike: AUROC = 0,692, PR-AUC = 0,420, preciznost
pri 10 % = 0,500, odziv pri 10 % = 0,286 i lift pri 10 % = 2,857, 5to
upucuje na ucinkovitu koncentraciju najrizicnijih dionica pri vrhu
liste. Vise R* i AUC vrijednosti u literaturi dijelom su posljedica
vecih i raznovrsnijih skupova podataka (prostorno i vremenski)

koji omogucuju vecu varijabilnost i u¢inkovitije ucenje. U postavci
sa 161 dionicom, uvjeti za generalizaciju prirodno su strozi.

Sto se tice odrednica, rezultati upucuju da izloZenost i operativni
uvjeti (PGDS/AADT, ograniCenje brzine i gustota prometa
na raskrizju) imaju dominantan utjecaj, dok uvjeti kolnika i
geometrija (PCl, uzduzni nagib) moduliraju rizik. Ti su rezultati
u skladu sa istrazivanjima koja kombiniraju boosting metode sa
SHAP-om radi objasnjivosti [17, 20, 24]. Oni podupiru pristup
ponderiranog kombiniranja SHAP vrijednosti preko viSe modela,
istodobno opravdavajuci smanjenje broja ulaznih varijabli bez
znatnog gubitka sposobnosti generalizacije modela.

Ukratko, rezultati izvan skupa za ucenje uskladeni su s
aktualnim pristupima (ansambli modela u kombinaciji sa SHAP-
om) te imaju operativnu primjenjivost za prioritizaciju. Tablica 1.
sluzi kao referentni okvir za metodoloski dosljednu usporedbu
zadataka, metrika i skala.

7. Ogranicenja i smjerovi buducih istrazivanja

lako su napredni modeli strojnog ucenja postigli pouzdanu
to¢nost pri predvidanju Wi izvan skupa za ucenje (R* = 0,6505;
MAE = 2,72; RMSE = 3,63), postoje odredena ogranicenja koja
treba razmotriti.

Pozorno upravljanje rizikom od prekomjernog prilagodavanja
neophodno je, posebno za modele koji ukljucuju velik broj
parametara [48]. U validaciji temeljenoj na klasifikaciji koja
se primjenjivala za odredivanje prioriteta ucinkovitost je bila
ogranitena prevalencijom klase (~20,5 %), Sto treba uzeti u obzir
pri tumacenju vrijednosti AUROC/PR-AUC.

Glavno ograniCenje proizlazi iz dostupnosti i detalja ulaznih
podataka. Nedostaju azurirane informacije o stanju vertikalnog
i horizontalnog znakovlja za ceste, trenutnome stanju kolnika i
potpunim klimatskim parametrima. Nadalje, podaci o prometnim
nesre€ama bili su ogranic¢eni u smislu detaljnih opisa uzroka,
uvjeta u vrijeme nesreca i tocnih geografskih lokacija incidenata,
Sto je utjecalo na preciznost modela.

Modeli su trenirani primjenom podataka iz glavne cestovne
mreze. Zato bi primjena istog pristupa na druge kategorije cesta
zahtijevala dodatnu prilagodbu.

Za buduca istrazivanja preporuCuje se prosirenje baze
podataka kako bi se ukljucile informacije o trenutnome stanju
infrastrukture, specificnijim klimatskim uvjetima i cimbenicima
povezanima s ponasanjem sudionika u prometu. Osim toga
primjena kombiniranih algoritama i objasnjivih tehnika
strojnog ucenja moze dodatno poboljsati prediktivnu tocnost i
interpretabilnost rezultata modela.

8. Zakljucak

Rezultati ovog istrazivanja upucuju da napredni modeli strojnog
ucenja omogucuju pouzdano predvidanje ponderirang indeksa
nesreca (Wi) na razini dionica i pruzaju potporu u operativhome
odlucivanju. U sklopu validacije prema podjeli 80/20 model
XGBoost s 15 ulaznih varijabli odabranih permutacijskom
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analizom SHAP postigao je vrijednosti R* od 0,6505, MAE
od 2,72 i RMSE od 3,63, Sto upucuje na snaznu uskladenost
predvidenih i promatranih vrijednosti izvan skupa za ucenje.
Kombinirana, ponderirana agregacija SHAP vrijednosti kroz sve
modele omogucila je stabilno rangiranje determinanti, pri ¢emu
su AADT (PGDS), ogranicenje brzine (LIMIT) i gustoca raskrizja
(K.Int. PT) prepoznati kao najutjecajniji ¢imbenici, a slijede
ih uvjeti kolnika (PCl) i uzduzni nagib (Ave_Inc.). Operativna
provjera usmjerena na prioritizaciju dodatno je pokazala da,
pri pragu Wi = 10,130 (prevalencija = 20,5 %), model uinkovito
koncentrira rizik (AUROC = 0,692; PR-AUC = 0,420; preciznost
pri 10 % = 0,500; odziv pri 10 % = 0,286; lift pri 10 % = 2,857), Sto
ga Cini prikladnim za ciljane inspekcije i intervencije u uvjetima
ogranicenih resursa.

Glavni doprinosi ovog istrazivanja su sljedeci: standardizirana
usporedba modela ansambla i osnovnih modela izvan skupa
za ucenje, treniranih u jednakim uvjetima za predvidanje
ponderiranog indeksa nesreca Wi; integrirani postupak
rangiranja varijabli (ponderirani SHAP kroz Sest modela) koji
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