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Izvorni znanstveni rad

Riste Ristov, Slobodan Ognjenović, Zlatko Zafirovski

Predviđanje nesigurnih cestovnih dionica pomoću strojnog učenja

U ovome je radu opisana metodologija strojnog učenja za predviđanje opasnih cestovnih 
dionica primjenom ponderiranog indeksa nesreća (Wi). U analizu uključena je 161 cestovna 
dionica u Sjevernoj Makedoniji, ukupne duljine oko 1300 km, pri čemu su razmotrene 23 
varijable svrstane u skupine koje se odnose na cestu, promet, okoliš i nesreće. Utjecaj 
značajki vrednovan je primjenom šest modela, uz podjelu podataka na skup za učenje 
i skup za testiranje u omjeru 80 : 20. Primjenom ponderiranog SHAP-a izvedeno je 
jedinstveno rangiranje varijabli, dok je konačni prediktivni model XGBoost temeljen na 15 
ulaznih značajki. Potvrđena učinkovitost modela iznosi R² = 0,65, a u sklopu operativne 
prioritizacije postignut je AUROC = 0,69 pri Wi ≥ 10,13, što nadležnim institucijama 
omogućuje pravodobnu identifikaciju opasnih dionica i odgovarajuće intervencije.
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Original research paper

Riste Ristov, Slobodan Ognjenović, Zlatko Zafirovski

Predicting unsafe road sections using machine learning

This paper presents an ML methodology to predict hazardous road segments, using the 
weighted accident index (Wi). The analysis covers 161 road segments in North Macedonia 
(~1,300 km)—with 23+1 variables categorized into Road, Traffic, Environmental, and 
Accident data. Feature influence is evaluated using six models with an 80/20 training/
testing split. Weighted SHAP is applied to obtain a single variable ranking; XGBoost with 
15 inputs is the final predictor. The model achieves a validated performance (R² = 0.65), 
while operational prioritization yields AUROC = 0.69 at Wi ≥ 10.13, enabling timely 
identification of hazardous segments and interventions by relevant authorities.
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1. Uvod

Prometne nesreće ozbiljna su globalna prijetnja javnoj 
sigurnosti, pri čemu posebno ugrožavaju mlađu populaciju. 
Svjetska zdravstvena organizacija navodi da su prometne 
nesreće vodeći uzrok smrtnosti među osobama u dobi od 5 
do 29 godina, pri čemu godišnje odnosu više od 1,19 milijuna 
života [1]. Iako su sustavne mjere i infrastrukturna poboljšanja 
doprinijela smanjenju stopa smrtnosti u razvijenim zemljama, 
prosječan broj smrtnih slučajeva u Europskoj uniji i dalje je visok 
i iznosi 45,5 na milijun stanovnika [2].
Stopa smrtnosti u Republici Sjevernoj Makedoniji iznosi 69,5 na 
milijun stanovnika [3], što je znatno iznad europskog prosjeka 
i pokazuje zabrinjavajući trend. Ti podaci ukazuju na hitnu 
potrebu za razvojem novih analitičkih pristupa koji bi unaprijedili 
sigurnost u prometu, omogućujući pravodobno prepoznavanje 
visokorizičnih dionica i planiranje odgovarajućih mjera.
Suvremene analitičke tehnike poput strojnog učenja i prostorno-
statističkih metoda omogućuju proaktivno otkrivanje nesigurnih 
cestovnih dionica prije nastanka kritičnih događaja. Primjena tih 
tehnologija omogućuje identifikaciju opasnih zona na temelju 
kombiniranog utjecaja više čimbenika, umjesto oslanjanja 
isključivo na povijesne podatke o nesrećama.
Cilj ovog istraživanja bio je razviti metodologiju za predviđanje 
nesigurnih cestovnih dionica analizom geometrijskih obilježja, 
stanja kolnika, intenziteta prometa i vanjskih čimbenika. Podaci 
primijenjeni u ovome istraživanju obuhvaćaju 161 dionicu 
primarne cestovne mreže, u ukupnoj duljini od približno 1300 km.
Napredni modeli strojnog učenja mogu se primijeniti u 
identificiranju ključnih čimbenika koji utječu na ponderirani 
indeks nesreća (engl. weighted accident index - Wi) i u razvoju 
prediktivnih alata za poboljšanje sigurnosti u prometu.
Rezultati ranijih istraživanja pokazuju kako različiti čimbenici, 
uključujući uzdužni nagib, polumjer zakrivljenosti, stanje kolnika, 
širinu trakova i ograničenu vidljivost, utječu na rizik od prometnih 
nesreća [4-6]. Modeli strojnog učenja, osobito algoritmi slučajne 
šume (engl. Random Forest - RF) i pojačavanja gradijenta (engl. 
Gradient Boosting - GB) s algoritmima XGBoost i CatBoost, sve 
se češće primjenjuju u analizi takvih parametara zbog svoje 
sposobnosti rukovanja složenim i nelinearnim odnosima te 
identificiranja najutjecajnijih varijabli [7, 8].
Slični pristupi primijenjeni su i u području procjene troškova 
infrastrukture, gdje su se ansambl-metode strojnog učenja 
poput RF-a i boosting modela pokazale učinkovitima u 
predviđanju složenih interakcija između višestrukih ulaznih 
varijabli [9]. “Istraživanja su također istaknula primjenu 
umjetnih neuronskih mreža (ANN) za predikciju učestalosti 
sudara, osobito kada su podaci ograničeni ili djelomično 
dostupni; međutim, interpretabilnost ovih modela i dalje je 
ograničena“ [10]. Nekolicina nedavnih istraživanja pokazala je 
da SHAP (SHapley Additive exPlanations) analiza može poslužiti 
kao dodatni alat za tumačenje rezultata vrlo preciznih modela, 
pružajući uvid u relativnu važnost čimbenika kao što su obujam 
prometa, tip ceste i planinski teren [11].

Osim toga razvijeni su kompozitni indeksi i karte za predviđanje 
rizika, u kojima su podaci kategorizirani na temelju razine 
utjecaja i rangiranja umjesto jednostavne binarne klasifikacije 
[12, 13]. Primjena tih metoda omogućila je bolje usmjeravanje 
resursa i određivanje prioriteta intervencija.
Međutim, većina postojećih analiza provedena je u zemljama s 
dobro razvijenim sustavima prikupljanja podataka. Za Republiku 
Sjevernu Makedoniju i okolnu regiju trenutačno ne postoje modeli 
koji integriraju lokalna ograničenja i manjak sveobuhvatnih 
podataka [14]. Cilj ovog istraživanja bio je popuniti navedenu 
prazninu primjenom nekoliko modela strojnog učenja (XGBoost, 
RF, GB, CatBoost, LightGBM i višeslojni perceptron – MLP) uz 
postupno smanjivanje broja ulaznih varijabli na temelju njihova 
doprinosa ponderiranome indeksu nesreća (Wi). Visokorizične 
cestovne dionice utvrđene su na temelju reprezentativnih 
nacionalnih podataka.

2. Pregled literature

Istraživanja koja se bave predviđanjem prometnih nesreća i 
njihove ozbiljnosti sve češće primjenjuju napredne algoritme 
strojnog učenja i interpretabilne modele za analizu ključnih 
utjecajnih čimbenika. U ovome poglavlju sažeta su relevantna 
istraživanja koja primjenjuju napredne metode za predikciju 
nesreća temeljene na stvarnim podacima, uključujući informacije 
o geografskome opsegu, broju slučajeva, primijenjenim 
modelima i izvedbenim metrikama.
U istraživanju provedenome u Kini, Chen i suradnici [15] primijenili 
su hibridni model MSCPO-XGBoost na skupu podataka od 13.000 
slučajeva, pri čemu je postignut koeficijent determinacije (R²) od 
0,918. Analizirali su čimbenike povezane s ozbiljnošću sudara 
kombinirajući optimiranje i strojno učenje. Iranmanesh i sur. [16] 
primijenili su XGBoost, stablo odluke (engl. Decision Tree - DT) i RF 
modele na podatke iz 784 slučaja nesreća na ruralnim cestama u 
jednoj provinciji u Iranu, pri čemu je postignuta najveća vrijednost 
R² od 0,873. Primjenom navedenih modela utvrđeni su dijelovi 
cesta s povećanim rizikom od prometnih nesreća.
U istraživanju u kojemu su primijenjeni podaci iz Južne 
Koreje Lee i sur. [17] primijenili su interpretativni pristup s 
proširenjem podataka na 11.689 zapisa primjenom SHAP-a za 
prepoznavanje utjecaja povezanih s infrastrukturom i postigli 
R² od 0,842. Mengistu i sur. [18] analizirali su 1037 slučajeva, 
uključujući podatke o vozačima, cestama i okolišu u Etiopiji, 
primjenom modela XGBoost, pri čemu su postigli R² od 0,863. U 
oba istraživanja transparentnost modela u objašnjenju faktora 
istaknuta je kao ključna prednost.
Alshehri i sur. [19] primijenili su modele DT i RF na skupu 
podataka od 3228 nesreća u Saudijskoj Arabiji. Površina 
ispod krivulje (engl. area under curve - AUC) iznosila je 0,78 
za predviđanje smrtnosti među dobnim skupinama i vrstama 
nesreća. AUC je mjera za određivanje učinkovitosti nekog 
modela. Osim toga model s najboljim rezultatima postigao 
je preciznost od 0,81 i pouzdanost od 0,75, što pokazuje da 
ima dobro uravnoteženu sposobnost otkrivanja pozitivnih 
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slučajeva. Ahmed i sur. [20] analizirali su 3146 incidenata 
na Novome Zelandu primjenom objašnjivih modela kao što 
su XGBoost i metodu LIME (engl. Local Interpretable Model-
Agnostic Explanations), pri čemu je postignut R² od 0,839. 
Najbolji klasifikacijski model postigao je AUC od 0,87, što 
ističe njegovu dosljednu učinkovitost u predviđanju razina 
ozbiljnosti nesreća. Vizualizacija utjecaja čimbenika dodatno 
ilustrira praktičnu primjenjivost tih modela.
Megnidio-Tchoukouegno i Adedeji [21] upotrijebili su bazu 
podataka STATS19, koja sadržava 45.000 zapisa iz Ujedinjene 
Kraljevine. Primijenili su modele GB i RF, pri čemu je najbolji 
model postigao vrijednost R² od 0,881. Alpalhão i sur. 
[22] analizirali su 28.649 slučajeva iz Lisabona primjenom 
hibridnoga regresijskog/klasifikacijskog modela GB, s 
korijenom srednje kvadratne pogreške (RMSE) od 0,332. 
Ta istraživanja posebno su važna za urbana područja, gdje 
dostupnost podataka omogućuje složeno modeliranje. U 
istraživanju koje su proveli Guido i sur. obrađeno je 1349 
slučajeva iz regije Cosenze u Italiji primjenom XGBoosta, 
SVM-a i RF-a. Najviši postignuti R² iznosio je 0,896, a modeli 
su primijenjeni za analizu broja uključenih vozila i obilježja 
ceste. Pomoću geoprostorne analize i strojnog učenja pokazali 
su primjenjivost modela u ruralnim okružjima.
Xiao i Duan [24] izradili su okvir dubokog učenja za predviđanje 
više zadataka primjenjujući ulazne podatke iz 10.563 slučaja, 
pri čemu je postignuta vrijednost R² od 0,894 i srednja 
apsolutna pogreška (MAE) od 0,243. U svojemu istraživanju 
proveli su detaljnu analizu SHAP kako bi vizualizirali doprinos 
svake varijable. U analizi ozbiljnosti sudara kombinirani su 
interpretabilnost i višefunkcionalnost.
U tablici 1. dan je sažet pregled reprezentativnih istraživanja 
(regija/opseg, zadatak, modeli, veličina uzorka i metrike) 
radi lakše i transparentnije usporedbe među istraživanjima i 
metodološki dosljedne procjene prijavljenih nalaza.
Nadovezujući se na navedena istraživanja, u ovome istraživanju 
primijenjeno je šest modela strojnog učenja (CatBoost, GB, 
XGBoost, RF, LightGBM i MLP) treniranih u jednakim uvjetima. 

Ključni doprinos ovog istraživanja ogleda se u sustavnoj 
usporedbi učinkovitosti modela u predviđanju ponderiranog 
indeksa nesreće (Wi) te razvoju metodologije za rangiranje 
parametara na temelju kombiniranih rezultata važnosti značajki. 
Osim toga rezultati pružaju praktične smjernice za identifikaciju 
visokorizičnih dionica unutar ciljnih cestovnih mreža.

3. Pregled podataka

3.1. Opće informacije o cestovnoj mreži

Cestovna mreža Republike Sjeverne Makedonije proteže se na 
ukupno 14.475 km i obuhvaća autoceste, regionalne i lokalne 
ceste [25]. Primarna cestovna mreža, duga 897 kilometara, 
ključna je dionica nacionalne i transeuropske prometne 
infrastrukture [26]. Uključuje autoceste, brze ceste i dvosmjerne 
ceste koje osiguravaju glavne prometne veze diljem zemlje i sa 
susjednim zemljama.

Slika 1. Pregled cesta A-kategorije

Istraživanje (ref.) Regija/Opseg Zadatak Modeli Veličina Metrika

Chen i sur. [15] Kina (širom zemlje) Regresija (ozbiljnost) MSCPO-XGBoost 13.000 R² = 0,918

Iranmanesh i sur. [16] Iran (ruralne ceste) Regresija (rizik/dionice) XGBoost, DT, RF 784 R²(maks.) = 0,873

Lee i sur. [17] Južna Koreja 
(na razini države) Regresija + XAI Interpretabilno strojno 

učenje + SHAP 11.689 R² = 0,842

Mengistu i sur. [18] Etiopija 
(na regionalnoj razini) Regresija (ozbiljnost) XGBoost 1037 R² = 0,863

Alshehri i sur. [19] Saudijska Arabija 
(više gradova)

Klasifikacija 
(rizik od nesreće sa 

smrtnim posljedicama)
DT, RF 3228 AUC ≤ 0,78; preciznost = 

0,81; odziv = 0,75

Ahmed i sur. [20] Novi Zeland 
(urbane sredine)

Hibridno 
(regresija + klasifikacija) XGBoost, LIME 3146 R² = 0,839; AUC = 0,87

Alpalhão i sur. [22] Portugal – Lisabon 
(urbane sredine)

Hibridno 
(Velika Britanija) GB 28.649 RMSE = 0,332

Tablica 1. Komparativni sažetak reprezentativnih istraživanja
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Istraživanje je obuhvatilo primarne ceste A1, A2, A3 i A4, koje 
se razlikuju po svojim tehničkim svojstvima i geometrijskim 
elementima. Kao što je to prikazano na slici 1., iako službena 
duljina primarne cestovne mreže iznosi 897 kilometara, analiza 
obuhvaća približno 1300 kilometara zbog zasebnog razmatranja 
dvaju cestovnih smjerova s odijeljenim kolnicima (autoceste). 
Taj pristup omogućuje detaljniju i objektivniju procjenu utjecaja 
različitih čimbenika na sigurnost cestovnog prometa.

3.2. Opis i obrada podataka

Kombiniranjem vremenske kategorizacije i klasifikacije prema 
karakteristikama dobiva se sveobuhvatan i sustavan pristup 
obradi podataka. Vremenska kategorizacija ističe promjene 
tijekom godina, dok klasifikacija prema karakteristikama 
omogućuje precizno razumijevanje uloge i utjecaja svakog 
pojedinog čimbenika. Podaci su obrađeni upotrebom alata 
Geografskoga informacijskog sustava (GIS), statističkih tehnika i 
metoda strojnog učenja te su identificirani prostorni i vremenski 
trendovi.
Konačna analitička baza podataka obuhvaća 161 cestovnu 
dionicu (≈1300 km) s potpunim zapisima za razdoblje između 
2014. i 2023. Prije izrade modela svi su slojevi ponovno 
projicirani na elipsoid WGS 84, prostorno povezani prema 
kilometarskim oznakama i provjereni zbog eventualnih 
dupliciranih identifikatora.

Karakteristike ceste
Ta kategorija uključuje različite geometrijske i funkcionalne 
parametre kao što su ograničenja brzine, zakrivljenost trase, 
radijusi krivulja, uzdužni nagibi i nadmorska visina. Analizirana 
su i bočna opterećenja u zavojima, zaustavni vidni razmak, 
hrapavost kolnika, dubina kolotraga, koeficijent površinskog 
trenja te indeks stanja kolnika (PCI). Uključeni su i podaci o 
gustoći na raskrižju, mostovima i vijaduktima te o stanju 
vertikalnog i horizontalnog znakovlja [27, 28].

Karakteristike prometa
Intenzitet prometa izražava se godišnjim prosjekom dnevnog 
prometa (engl. Annual Average Daily Traffic - AADT) na temelju 
automatskog brojanja prometa s fiksnih i mobilnih uređaja. 
Pomoću tog parametra moguće je analizirati utjecaj opsega 
prometa na vjerojatnost nesreća [29].

Karakteristike koje se odnose na okoliš
Klimatski parametri obuhvaćaju prosječne i ekstremne godišnje 
vrijednosti padalina i temperature, prikupljene tijekom deset 
godina s odgovarajućih meteoroloških stanica. Podaci su 
obrađeni geoprostornim metodama kako bi se osigurala 
pokrivenost visoke rezolucije na razini pojedinačnih cestovnih 
dionica [30].

Podaci o prometnim nesrećama
Učestalost i prostorna raspodjela prometnih nesreća analizirani 
su pomoću indeksa Wi, koji uzima u obzir i broj i ozbiljnost nesreća. 
Nesreće sa smrtnim posljedicama, nesreće s ozljedama i nesreće 
samo s materijalnom štetom ponderirane su s vrijednostima 85, 
10 i 1, nakon čega je rezultat normaliziran u odnosu na duljinu 
cestovne dionice. Taj indeks služi kao ključni pokazatelj za 
usporedbu razina sigurnosti različitih cestovnih dionica [31].
Kontrola kvalitete uključivala je imputaciju manje od 3 % 
nedostajućih kontinuiranih vrijednosti s medijanom svake 
varijable, kodiranje kategoričkih pokazatelja jednim korakom 
i standardizaciju z-vrijednosti svih kontinuiranih ulaza. 
Geometrijski, prometni i inventarski slojevi preuzeti su sa 
službenog WebGIS portala Javnog poduzeća za državne ceste, čime 
se osiguravaju dosljednost mjerenja i atribuiranje. Dodatak B 
pruža potpuni popis definicija varijabli i formula složenih indeksa.

3.3. Statistički sažetak skupa podataka

U sklopu deskriptivne analize primijenjen je podskup za učenje, 
u kojemu je 80 % podataka normalizirano na raspon od 0 do 1, 

Slika 2. �Normalizirani kutijasti dijagram ulaznih varijabli i indeksa Wi: skup za učenje
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čime su istaknuti relativni odnosi među ulaznim varijablama 
i izlaznim parametrima (Wi). Na slici 2. mogu se uočiti izraženi 
interkvartilni rasponi kod većine varijabli, dok izdvojene točke 
označavaju cestovne dionice s naglašenim odstupanjima od 
uobičajenog obrasca, posebno u slučajevima Wi-ja, PGDS-a i 
PCI-ja.
Preostalih 20 % podataka formiralo je testni podskup, obrađen 
istim postupkom normalizacije. Drugi dijagram pokazuje da 
raspodjele zadržavaju oblik i širinu interkvartilnih raspona 
opaženih u skupu za učenje, što potvrđuje da je podjela podataka 
reprezentativna i da validacijski postupak ne uvodi sustavna 
odstupanja u raspodjeli vrijednosti.
Na slici 3. prikazana je distribucija varijabli u testnome podskupu, 
što omogućuje izravnu usporedbu s podacima za učenje. 
Dosljednost između skupa za učenje i testnog skupa temelj je za 
vjerodostojnu procjenu opće upotrebljivosti razvijenih modela. 
Razlike u duljini kutijastih dijagrama i broju izdvojenih vrijednosti 
kod pojedinih varijabli upućuju na njihov doprinos varijabilnosti 
sigurnosnih uvjeta na promatranim cestovnim dionicama.

4. �Metodološki pristup za razvoj modela 
predviđanja ponderiranog indeksa nesreća 
(Wi)

Za razvoj pouzdanog i interpretabilnog modela za predviđanje 
ponderiranog indeksa nesreća (Wi) primijenjen je strukturirani 
postupak koji obuhvaća sedam koraka koji uključuju odabir 
modela, podešavanje, optimiranje značajki i procjenu. Takav 
pristup jamči postupan razvoj strukture modela i ulaznih 

značajki, uz pozorno odvajanje istraživačkog dijela analize od 
procesa validacije. Tijek rada prikazan je na slici 4.

Početni probir modela
Provedena je početna usporedba devet različitih modela 
strojnog učenja. To uključuje linearne modele, modele temeljene 
na DT-u, boosting metode, modele temeljene na jezgri (kernel) 
i neuronske mreže. Ta usporedba omogućila je prepoznavanje 
algoritama koji pokazuju obećavajući potencijal predviđanja na 
temelju općih trendova R² i metrika pogreške [32, 33].

Odabir modela
Na temelju preliminarnih rezultata modeli koji su imali R² veći 
od 0,50 smatrani su dovoljno pouzdanima za uključivanje u 
formalni proces validacije.

Podešavanje hiperparametara
Za svaki odabrani model provedeno je 20-iterativno nasumično 
pretraživanje na 80-postotnome podskupu za treniranje kako 
bi se identificirali prikladni hiperparametri. U tablici 2. prikazani 
su hiperparametri nakon podešavanja, primijenjeni u evaluaciji 
80/20, pri čemu su sve prikazane metrike izračunane na 
odvojenome (held-out) testnom skupu. U svim je postupcima 
korištena fiksna vrijednost parametra random_state = 42 kako 
bi se osigurala ponovljivost rezultata.

Odabir značajki i analiza pouzdanosti
Puni skup od 23 ulazna parametra postupno je smanjivan 
primjenom SHAP-a i metoda temeljenih na permutacijama, pri 

Slika 3. �Normalizirani kutijasti dijagram ulaznih varijabli i indeks Wi: testni skup

Slika 4. Linearan tijek rada za razvoj modela predviđanja ponderiranog indeksa nesreća (Wi)
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čemu je učinkovitost praćena nakon svakog uklanjanja. Konačni 
odabir uključivao je samo najutjecajnije značajke za svaki model. 
Stabilnost odabira značajki provjerena je analizama temeljenima 
na korelaciji različitih random seed inicijalizacija i varijanti 
modela [34, 35]. Važnost varijabli određena je permutacijskim 
pristupom, pri čemu se bilježilo smanjenje R² nakon nasumičnog 
miješanja svake varijable.

Treniranje i testiranje (podjela 80/20)
S optimiranim hiperparametrima i smanjenim skupom značajki, 
svaki je model treniran na 80 % podataka i testiran na preostalih 
20 %. To je omogućilo nepristrane procjene performansi, 
temeljene isključivo na odvojenome (held-out) testnom skupu 
[35, 36]. Performanse su prikazane kao R² (%), MAE i RMSE za 
testni skup koji nije primijenjen za treniranje.
Integracija za tumačenje (bez ansambla za predviđanje)
Nije primijenjen zaseban prediktivni ansambl, a integracija 
je poslužila samo za dobivanje robusnog rangiranja među 
modelima ponderiranim SHAP-om, pri čemu je doprinos svakog 
modela proporcionalan njegovoj vrijednosti R² [39].

Formulacija konačnih modela
Za konačni model predviđanja odabran je XGBoost s 15 ulaza 
kao algoritam s najvišim performansama u evaluaciji 80/20, 
a sve metrike prikazane su na temelju validacije izvan uzorka. 
Eventualno preoblikovanje modela na cijelome skupu podataka 
izvodi se isključivo za primjenu na novim cestovnim dionicama, 
dok svi prijavljeni rezultati ostaju temeljeni na evaluaciji 80/20 
[46].
Ta metodologija pruža koherentan i ponovljiv okvir za 
predviđanje indeksa Wi. Svaki korak, od početnog testiranja 
modela do konačne implementacije, bio je pozorno strukturiran 
kako bi se osigurali transparentnost, robusnost i znanstvena 
strogost. Primjena odabranih modela uz odgovarajuće postupke 
podešavanja i validacije rezultirala je alatom koji je točan i 
primjenjiv u praksi za procjenu sigurnosti cestovnog prometa.

5. �Analitička procjena učinkovitosti prediktivnih 
modela

Evaluacija različitih pristupa strojnog učenja za predviđanje 
ponderiranog indeksa nesreća prikazana je u fazama. Evaluacija 
obuhvaća R² vrijednosti modela tijekom treniranja s punim 

skupom podataka, testiranje primjenom podjele 80/20, odabir 
optimalnih parametara i razvoj konačnog prediktivnog modela.

5.1. Indikativna evaluacija treniranja i probir modela

U početnoj fazi analize svi odabrani modeli trenirani su 
primjenom cijelog skupa podataka. Taj pristup omogućio je 
brzu procjenu mogućnosti različitih metoda za prediktivno 
modeliranje ponderiranog indeksa nesreća Wi [43, 45]. Analiza 
je uključivala različite matematičke pristupe kao što su linearni 
modeli, modeli temeljeni na stablima odluke (DT), boosting 
modeli, metode temeljene na jezgrenim funkcijama i umjetne 
neuronske mreže (ANN). Tih devet modela odabrano je na 
temelju njihove kompatibilnosti s prirodom dostupnih podataka 
i njihove dokazane primjenjivosti u prethodnim istraživanjima 
sigurnosti cestovnog prometa [6, 8].
Rezultati treniranja modela odražavaju njihov općeniti potencijal 
i primijenjeni su za prepoznavanje onih prikladnih za daljnju 
analizu. Kriterij odabira bilo je postizanje vrijednosti R² veće 
od 50 %, što se smatralo najnižim pragom za obuhvaćanje 
varijabilnosti u Wi.
Slika 5. ilustrira početne rezultate svih devet modela, prikazane 
kroz metrike R² i RMSE. Modeli s vrijednostima R² iznad 50 % 
smatrani su prikladnima za modeliranje te vrste podataka i 
zadržani za daljnje potvrđivanje.

Slika 5. Početne vrijednosti R² i RMSE za devet prediktivnih modela

Na temelju početne analize odabrano je šest modela, CatBoost 
[37], MLP, XGBoost [47], LightGBM [38], GB i RF [40], za daljnju 
evaluaciju primjenom strukturiranog postupka opisanog u 

Tablica 2. Konačni hiperparametri za svaki algoritam (podjela 80/20)

Model Konačni hiperparametri

XGBoost (konačni prediktor) n_estimators = 100; max_depth = 4; learning_rate = 0,3 (default); random_state = 42

Pojačavanje gradijenta (GB) n_estimators = 100; max_depth = 4; learning_rate = 0,1 (default); random_state = 42

Slučajna šuma (RF) n_estimators = 100; max_depth = 4; min_samples_split = 2; random_state = 42

CatBoost (CB) iterations = 1000; depth = 6; learning_rate = 0.03; random_state = 42

LightGBM (LGBM) n_estimators = 300; learning_rate = 0,03; max_depth = 4; min_child_samples = 10; random_state = 42

Višeslojni perceptron (MLP) hidden_layer_sizes = (100, 50); activation = “relu”; alpha = 0,0005; max_iter = 1000; random_state = 42
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metodologiji. Isključeni modeli nisu zadovoljili prag prediktivne 
sposobnosti i zato nisu primijenjeni u daljnjim koracima 
optimiranja.

5.2. �Definiranje optimalnog broja utjecajnih 
parametara

Provedena je kombinirana analiza primjenom vrijednosti SHAP 
i važnosti permutacije kako bi se razjasnio utjecaj pojedinačnih 
parametara na Wi. Obje metode omogućuju transparentno 
tumačenje uloge svake ulazne varijable u konačnome 
predviđanju, što je ključno za donošenje praktičnih zaključaka i 
definiranje formula za predviđanje.
SHAP vrijednosti potječu iz teorije igara i izražavaju doprinos 
svakog parametra određenome predviđanju. Te vrijednosti 
temelje se na principu pravedne raspodjele utjecaja na rezultat 
modela. SHAP omogućuje detaljan uvid u to koji parametri imaju 
najveći utjecaj te je li taj utjecaj pozitivan ili negativan, ovisno o 
smjeru i veličini vrijednosti [42-44]. Vrijednost parametra i može 
se izračunati na sljedeći način:

	 (1)

gdje Fi predstavlja vrijednost SHAP za parametar i, S podskup 
preostalih parametara, a f(S) rezultat modela za ulazni skup S.

Osim toga SHAP metodologija omogućuje neizravno 
promatranje interakcija između parametara putem njihova 
kumulativnog učinka na rezultat modela.
Za provjeru tih rezultata provedena je analiza važnosti 
permutacijama. Taj pristup procjenjuje važnost svakog 
parametra mjerenjem promjene u učinkovitosti modela kada 
se vrijednosti određenog parametra zamijene permutiranim 
vrijednostima. Ako ta zamjena uzrokuje znatno smanjenje 
preciznosti, tada se parametar smatra vrlo utjecajnim [40]. 

Utjecaj parametra definiran je razlikom u vrijednostima R², izraz (2):

Importancei = R 2
original – R 2

permuted,i	 (2)

pri čemu je R2
original objašnjena varijanca izvornog modela a 

R2
permuted,i vrijednost dobivena nakon permutacije vrijednosti 

parametra i. Što je veća razlika, to je parametar utjecajniji na 
predviđanja modela.

Za pet od šest modela (GB, RF, CatBoost, LightGBM i XGB) 
upotrijebljen je isti SHAP objašnjivač temeljen na paketu 
TreeExplainer, dok je za MLP model primijenjen objašnjivač 
KernelExplainer zbog svoje strukture neuronske mreže.
Na slici 6. prikazana je normalizirana važnost svakog od 23 
parametra u usporedbi među modelima. Brojevi u kvadratima 
apsolutne su SHAP vrijednosti zaokružene na dvije decimale, dok 
boja vizualno označava relativnu važnost na skali od 0 do 1. Ta 
vizualizacija omogućuje izravnu usporedbu utjecaja parametara u 
svim modelima; PGDS, LIMIT i K.Int. P.T nedvojbeno predstavljaju 
najdosljednije utjecajne parametre. Istodobno parametri poput 
KON.NAK., H sign i Max_Temp pokazuju nižu ili selektivnu važnost 
samo u pojedinačnim modelima. Za konačno rangiranje parametara 
SHAP vrijednosti dobivene iz šest modela ponderirane su njihovim 
pripadajućim vrijednostima R² iz analize na skupu podataka 
podijeljenom u omjeru 80/20. Te su vrijednosti navedene u tablici 3.

Tablica 3. �Vrijednosti u pogledu učinkovitosti R² primijenjene kao 
težine u konačnome SHAP izračunu

Slika 6. Normalizirane vrijednosti važnosti značajki prema SHAP metodi za sve modele

Model Vrijednost R² Težina

Pojačavanje gradijenta (GB) 0,5381 0,225

Slučajna šuma (RF) 0,5126 0,214

CatBoost (CB) 0,4664 0,195

LightGBM (LGBM) 0,3447 0,144

Višeslojni perceptron (MLP) 0,1607 0,067

XGBoost (XGB) 0,1043 0,044
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Nadalje, kako bi se rezultati svih modela integrirali u sintetičku 
procjenu, za svaki parametar izračunana je ponderirana SHAP 
vrijednost na sljedeći način:

Sj = w1 · Sj1 + w2 · Sj2 +…+ w6 · Sj6	 (3)

Izraz (3) predstavlja zbroj produkata SHAP vrijednosti za 
određeni parametar j, dobivenih iz svakog od šest modela (Sj1, 
Sj2, …. Sj6) i njihovih pripadajućih težina (w1, w2, …. w6), koje su 
određene proporcionalno točnosti vrijednosti R² svakog modela. 
Time se dobiva SHAP vrijednost koja integrira sve modele u 
jedinstvenu metriku važnosti.
Na slici 7. prikazane su dobivene vrijednosti utjecaja za svaki 
parametar, izražene pomoću ponderirane SHAP vrijednosti. Taj 
stupčasti grafikon omogućuje rangiranje parametara prema njihovoj 
ukupnoj važnosti kroz sve modele. Najviše vrijednosti zabilježene 
su za PGDS, LIMIT i K.Int. P.T., što upućuje na njihov dosljedan i 
dominantan utjecaj na predviđanja u svim modelima. Suprotno tome 
parametri poput KON.NAK., Max_Temp i H sign imali su najniže 
ponderirane SHAP vrijednosti, što upućuje na to da je njihov utjecaj 
na izlaznu varijablu bio minimalan ili ograničen na nekoliko modela. 
Taj dijagram omogućuje vizualnu procjenu ključnih čimbenika za 
buduće analize i potencijalno smanjenje broja varijabli.
Radi daljnje analize parametri su rangirani prema ponderiranim 
SHAP vrijednostima kako bi se postupno smanjio broj uključenih 
varijabli. Primjenom tog pristupa moguće je odrediti najutjecajnije 
parametre bez oslanjanja na tradicionalnu metodu postupne 
eliminacije, zahvaljujući integriranoj evaluaciji svih modela.

5.3. �Optimiranje broja parametara i odabir 
najpreciznijeg modela

U toj fazi šest modela procijenjeno je s obzirom na njihovu 
sposobnost predviđanja indeksa Wi, s posebnim težištem 

na utjecaju smanjenja broja ulaznih parametara na točnost 
predviđanja (tj. R²). Analiza je bila temeljena na podjeli podataka 
u omjeru 80/20, s parametrima koji su sekvencijalno uklonjeni 
prema njihovim unaprijed definiranim rangovima važnosti [41].
Za svaku iteraciju odabire se podskup najrelevantnijih značajki, 
nakon čega slijedi treniranje i testiranje modela za istu podjelu. 
MLP model uključivao je standardizaciju ulaza unutar pipelinea, 
dok je LightGBM model upotrebljavao posebno podešene 
hiperparametre za kontrolu složenosti modela. Upotrijebljen 
je fiksni random_state postavljen na 42 kako bi se osigurala 
ponovljivost rezultata.
Na slici 8. prikazana je varijacija vrijednosti R² za različit broj 
parametara za svaki model. Grafikon omogućuje vizualnu 
usporedbu osjetljivosti i robusnosti modela na smanjenje 
dimenzionalnosti. Važno je istaknuti da neki modeli poput 
GB-a održavaju stabilnu razinu učinkovitosti kroz širi raspon 
parametara, dok drugi poput MLP-a pokazuju nagle varijacije, 
osobito pri smanjenome broju ulaza.
U tablici 4. prikazana je maksimalna R² vrijednost postignuta 
za svaki model, zajedno s odgovarajućim brojem parametara, 
poredanima silaznim slijedom prema točnosti.

Tablica 4. �Najveća vrijednost R² (%) i odgovarajući broj parametara za 
svaki model

Slika 7. Važnost značajki (ponderirane SHAP vrijednosti)

Model R² [%] Broj parametara

XGBoost 65,05 15

GB 57,13 7

MLP 56,39 9

LightGBM 55,21 9

CatBoost 52,06 7

RF 48,40 6
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Rezultati su pokazali da je XGBoost najučinkovitiji model za 
daljnju upotrebu, s najvišom postignutom vrijednošću R². 
Unatoč manjemu broju parametara, GB i CatBoost osiguravaju 
konkurentnu preciznost i stabilnost, što ih čini vrlo učinkovitima 
kada je količina podataka ograničena. MLP i LightGBM ostvarili su 
usporedive vrijednosti R², no samo pod određenim parametrima 
i s manjom dosljednošću kroz cijeli raspon.
Ti rezultati upućuju na to da odabir odgovarajućeg modela i 
broja parametara može znatno poboljšati točnost predviđanja, 
čak i ako se ne oslanja na cijeli skup ulaznih varijabli. Ta analiza 
dodatno omogućuje usklađivanje dimenzionalnosti i stabilnosti 
modela, što je ključno za primjenu u praksi.

5.4. Testiranje i validacija

Proces testiranja i validacije ključan je za procjenu stabilnosti, 
točnosti i primjenjivosti razvijenog prediktivnog modela za Wi 
u stvarnim uvjetima. Kao što je to detaljno opisano u ovome 
odjeljku, za kvantificiranje točnosti predviđanja primijenjeno je 
testiranje temeljeno na regresiji, dok je validacija temeljena na 
klasifikaciji primijenjena za ispitivanje sposobnosti modela da 
identificira i rangira dionice s većim rizikom kako bi se podržale 
praktične odluke o intervencijama sigurnosti na cestama.

5.4.1. Testiranje (regresija, 80/20)

Za evaluaciju modela XGBoost, treniranog na 15 najutjecajnijih 
parametara prema SHAP vrijednostima, primijenjena je podjela 
podataka od 80 % za treniranje i 20 % za testiranje. Usporedba 
“predviđenog i stvarnog“ s idealnom linijom y = x omogućuje 

izravnu vizualnu procjenu podudarnosti između rezultata 
modela i promatranih vrijednosti Wi (slika 9.).

Slika 9. �Usporedba predviđenih i stvarnih vrijednosti za Wi pomoću 
XGBoosta s podjelom podataka od 80 % za treniranje i 20 % za 
testiranje

Većina točaka nalazila se u neposrednoj blizini idealne 
linije, uz očekivano, ali ograničeno raspršenje u ekstremnim 
vrijednostima. Kvantitativno, R² = 0,6505 upućuje na to da se 
znatan dio varijance Wi može pripisati modelu, dok vrijednosti 
MAE =2,72 i RMSE = 3,63 potvrđuju umjerene vrijednosti 
apsolutne pogreške i korijena srednje kvadratne pogreške. Zato 
ti rezultati podupiru primjenu modela XGBoost kao pouzdane 
osnove za operativnu procjenu rizika na razini dionica.

Slika 8. Varijacija R² (%) s brojem ulaznih parametara za sve modele
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5.4.2.� Validacija (klasifikacija za određivanje prioriteta 
rizika)

Osim preciznih regresijskih predviđanja za praktičnu primjenu 
ključno je da model da prioritet dionicama s najvećim rizikom 
na vrhu liste prioriteta. Regresijski model prilagođen je 
klasifikacijskoj postavci s pragom Wi ≥ 10,130 (prevalencija 
≈ 20,5 %) kako bi se procijenio taj aspekt, a učinkovitosti su 
procijenjene kroz 100 bootstrap iteracija. Primjena metrika 
prilagođenih neuravnoteženim klasama (preciznost/odziv pri 
fiksnim stopama pregleda, PR-AUC) i dijagnostika usmjerenih 
na rangiranje (dobici/lift) metodološki je primjeren za zadatke 
određivanja prioriteta u analitici sigurnosti cestovnog prometa 
i usklađen je s nedavnim primjenama strojnog učenja u 
modeliranju rizika od sudara [42, 43]. Agregirani rezultati 
(medijani s 95 % CI) sažeti su kako slijedi:
-- AUROC: 0,692 [0,519, 0,834]
-- PR-AUC: 0,420 [0,229, 0,696]
-- preciznosti pri 10 %: 0,500 [0,250, 0,750]
-- odziv pri 10 %: 0,286 [0,143, 0,429]
-- povećanje učinkovitosti (lift) pri 10 %: 2,857 [1,429, 4,286]

Na slici 10. prikazana je krivulja učinka (gains). Pregledom samo 
prvih 10 % cestovnih dionica primjenom ocjena rizika modela 
identificirana je otprilike polovina svih stvarno visokorizičnih 
dionica. To označava znatno poboljšanje u odnosu na slučajan 
odabir i jasan pokazatelj operativne korisnosti za rangiranje.

Slika 10. �Krivulja učinka za prepoznavanje dionica s vrijednošću Wi ≥ 
10, 130 (bootstrap medijan, 100 iteracija)

Na slici 11. prikazana je krivulja povećanja koja kvantificira 
prednost u odnosu na slučajan izbor. U prvih 10 % rangiranih 
dionica lift iznosi približno 2,9, što upućuje na to da model 
koncentrira znatno veći udio “pozitivnih“ slučajeva pri 
vrhu liste, što je upravo ono što se očekuje od učinkovite 
prioritizacije.
Sveukupno, validacija temeljena na klasifikaciji pokazuje da 
model daje točna predviđanja za Wi te učinkovito rangira dionice 
prema riziku. U kombinaciji s regresijskim testovima ti nalazi 
pružaju uvjerljivu potvrdu da je model primjenjiv u sustavnome 
planiranju sigurnosti prometa.

Slika 11. �Krivulja povećanja za procjenu relativnog učinka u 
rangiranome odabiru (bootstrap medijan, 100 iteracija)

6. Rasprava o rezultatima

6.1. Analiza rezultata

Analiza je obuhvatila šest modela (XGBoost, CatBoost, GB, 
RF, LightGBM i MLP) i provedena je u sklopu dva pristupa. 
Evaluacija temeljena na vrijednosti R² (R², MAE i RMSE) 
provedena je primjenom podjele 80/20 na treniranje i testni 
skup, uz objašnjivost modela SHAP-om i analizom važnosti 
permutacijom. Utjecaj varijabli izračunan je za svih šest 
modela i ponderiran prosjekom s težinama proporcionalnima 
R² vrijednosti svakog modela prema evaluacijskome protokolu 
podjele 80/20 (GB: R² = 0,5381, težina = 0,225; RF: R² = 0,5126, 
težina = 0,214; CatBoost: R² = 0,4664, težina = 0,195; LightGBM: 
R² = 0,3447, težina = 0,144; MLP: R² = 0,1607, težina = 0,067; 
i XGB: R² = 0,1043, težina = 0,044). Ta ponderirana agregacija 
SHAP vrijednosti stvara jedinstvenu rang-listu koja integrira sve 
modele, pri čemu je stabilna i manje osjetljiva na specifičnosti 
pojedinog algoritma.
Dobivene rang-liste pokazuju da su PGDS (AADT), LIMIT i K.Int. 
P.T. bili najdosljednije utjecajni čimbenici, pri čemu su PCI i Ave_
Inc među vodećim infrastrukturnim/geometrijskim varijablama. 
Za razliku od njih, KON.NAK., H sign i Max_Temp pokazuju 
selektivnu ili nisku važnost. Mehanistički gledano, izloženost i 
radni uvjeti povećavaju osnovni rizik, dok ga uvjeti na kolniku i 
geometrija moduliraju trenjem, stabilnosti i vidljivosti.
Analiza ablacijske regresije (R² kao funkcija broja ulaznih varijabli) 
ukazala je na očitu ravnotežu između kompaktnosti modela 
i točnosti predviđanja. Vršne vrijednosti R² (%) i optimalan broj 
ulaznih varijabli po modelu jesu sljedeće: 65,05 (15 varijabli) za 
XGBoost, 57,13 (7 varijabli) za GB, 56,39 (9 varijabli) za MLP, 
55,21 (9 varijabli) za LightGBM, 52,06 (7 varijabli) za CatBoost 
i 48,40 (6 varijabli) za RF. Time je dokazano da se najbolja 
generalizacija postiže primjenom reducirane, ali informativne 
podskupine varijabli, za razliku od primjene cijelog skupa ulaznih 
podataka.
Pri klasičnoj 80/20 podjeli podataka za validaciju XGBoost 
[47] s 15 ulaznih varijabli, odabranih kombinacijom SHAP i 
permutacijske važnosti, postigao je R² = 0,6505, MAE = 2,72 
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i RMSE = 3,63, pri čemu su testne točke bile koncentrirane 
oko idealne linije y = x, što potvrđuje snažno slaganje između 
predviđenih i opažanih vrijednosti Wi.
Za operativnu validaciju (prioritizaciju) izlaz regresijskog 
modela prilagođen je klasifikacijskome scenariju s pragom Wi 
≥ 10,130 (prevalencija ≈ 20,5 %) te sažet preko 100x bootstrap 
iteracija. Rezultati su bili sljedeći: AUROC = 0,692, PR-AUC 
= 0,420, preciznost pri 10 % = 0,500, odziv pri 10 % = 0,286, i 
povećanje učinkovitosti pri 10 % = 2,857. Ti rezultati upućuju 
na to da je pregledom samo gornjih 10 % dionica obuhvaćen 
znatno veći udio stvarno visokorizičnih segmenata u usporedbi 
s nasumičnim odabirom (što je vidljivo i iz krivulja dobitka/
povećanje učinkovitosti).
Ukratko, 15 ulaznih varijabli dovoljno je za stabilnu generalizaciju 
u modelu XGBoost, dok GB i CatBoost ostvaruju konkurentne 
performanse čak i s manjim brojem ulaza, što je posebno korisno 
u uvjetima ograničenih podataka. Osim što model predviđa Wi s 
visokim slaganjem izvan skupa za učenje (R²), pristup učinkovito 
stavlja segmente s najvećim rizikom na vrh liste za inspekciju 
i intervenciju. Tumačenje se temelji na validiranim rezultatima 
izvan skupa za učenje. Rezultati dobiveni na cjelokupnome 
razvojnome skupu primijenjeni su isključivo u istraživačke svrhe, 
a ne za formalnu evaluaciju.

6.2. Usporedba s prethodnim istraživanjima

Validirani rezultati predikcije Wi prema podjeli 80/20 (XGBoost, 
15 ulaznih varijabli: R² = 0,6505, MAE = 2,72, RMSE = 3,63) 
usklađeni su s aktualnim praksama koje preferiraju ansamble 
temeljene na stablima i ističu objašnjivost modela putem 
SHAP-a. U regresijskim istraživanjima sažetima u tablici 1. 
prijavljene vrijednosti R² obično se kreću oko 0, 84 do 0,92 za 
nacionalne ili urbane kontekste s većim i bogatijim skupovima 
podataka [15, 17, 18, 21, 23]. U hibridnim ili interpretacijski 
usmjerenim okružjima s težištem na urbanim sredinama 
rezultati se uglavnom kreću oko R² ≈ 0,83 do 0,87 [20]. Te su 
razlike očekivane i rezultat su razlike u ciljevima (dok mnoga 
istraživanja predviđaju ozbiljnost nesreća, ovo istraživanje 
modelira kontinuirani Wi), prostorne razlučivosti i opsega 
atributa. Zato su usporedbe ponajprije metodološke prirode, s 
težištem na simultanoj primjeni boostinga i objašnjive umjetne 
inteligencije (XAI), a ne na izravnoj brojčanoj usporedivosti.
U sklopu klasifikacijskih i hibridnih pristupa prethodna 
istraživanja obično su izvještavala o metrikama AUC, PR-AUC, 
preciznosti i odzivu, pri čemu se AUC kretao otprilike između 
0,78 i 0,87, ovisno o specifičnome zadatku i skupu podataka 
[19, 20]. Radi operativne usporedivosti u ovom je istraživanju 
provedena i provjera prioritizacije: pri pragu Wi ≥ 10,130 
(prevalencija ≈ 20,5 %; 100 × bootstrap iteracija) dobivene su 
sljedeće metrike: AUROC = 0,692, PR-AUC = 0,420, preciznost 
pri 10 % = 0,500, odziv pri 10 % = 0,286 i lift pri 10 % = 2,857, što 
upućuje na učinkovitu koncentraciju najrizičnijih dionica pri vrhu 
liste. Više R² i AUC vrijednosti u literaturi dijelom su posljedica 
većih i raznovrsnijih skupova podataka (prostorno i vremenski) 

koji omogućuju veću varijabilnost i učinkovitije učenje. U postavci 
sa 161 dionicom, uvjeti za generalizaciju prirodno su stroži.
Što se tiče odrednica, rezultati upućuju da izloženost i operativni 
uvjeti (PGDS/AADT, ograničenje brzine i gustoća prometa 
na raskrižju) imaju dominantan utjecaj, dok uvjeti kolnika i 
geometrija (PCI, uzdužni nagib) moduliraju rizik. Ti su rezultati 
u skladu sa istraživanjima koja kombiniraju boosting metode sa 
SHAP-om radi objašnjivosti [17, 20, 24]. Oni podupiru pristup 
ponderiranog kombiniranja SHAP vrijednosti preko više modela, 
istodobno opravdavajući smanjenje broja ulaznih varijabli bez 
znatnog gubitka sposobnosti generalizacije modela.
Ukratko, rezultati izvan skupa za učenje usklađeni su s 
aktualnim pristupima (ansambli modela u kombinaciji sa SHAP-
om) te imaju operativnu primjenjivost za prioritizaciju. Tablica 1. 
služi kao referentni okvir za metodološki dosljednu usporedbu 
zadataka, metrika i skala.

7. Ograničenja i smjerovi budućih istraživanja

Iako su napredni modeli strojnog učenja postigli pouzdanu 
točnost pri predviđanju Wi izvan skupa za učenje (R² = 0,6505; 
MAE = 2,72; RMSE = 3,63), postoje određena ograničenja koja 
treba razmotriti.
Pozorno upravljanje rizikom od prekomjernog prilagođavanja 
neophodno je, posebno za modele koji uključuju velik broj 
parametara [48]. U validaciji temeljenoj na klasifikaciji koja 
se primjenjivala za određivanje prioriteta učinkovitost je bila 
ograničena prevalencijom klase (~20,5 %), što treba uzeti u obzir 
pri tumačenju vrijednosti AUROC/PR-AUC.
Glavno ograničenje proizlazi iz dostupnosti i detalja ulaznih 
podataka. Nedostaju ažurirane informacije o stanju vertikalnog 
i horizontalnog znakovlja za ceste, trenutnome stanju kolnika i 
potpunim klimatskim parametrima. Nadalje, podaci o prometnim 
nesrećama bili su ograničeni u smislu detaljnih opisa uzroka, 
uvjeta u vrijeme nesreća i točnih geografskih lokacija incidenata, 
što je utjecalo na preciznost modela.
Modeli su trenirani primjenom podataka iz glavne cestovne 
mreže. Zato bi primjena istog pristupa na druge kategorije cesta 
zahtijevala dodatnu prilagodbu.
Za buduća istraživanja preporučuje se proširenje baze 
podataka kako bi se uključile informacije o trenutnome stanju 
infrastrukture, specifičnijim klimatskim uvjetima i čimbenicima 
povezanima s ponašanjem sudionika u prometu. Osim toga 
primjena kombiniranih algoritama i objašnjivih tehnika 
strojnog učenja može dodatno poboljšati prediktivnu točnost i 
interpretabilnost rezultata modela.

8. Zaključak

Rezultati ovog istraživanja upućuju da napredni modeli strojnog 
učenja omogućuju pouzdano predviđanje ponderirang indeksa 
nesreća (Wi) na razini dionica i pružaju potporu u operativnome 
odlučivanju. U sklopu validacije prema podjeli 80/20 model 
XGBoost s 15 ulaznih varijabli odabranih permutacijskom 
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analizom SHAP postigao je vrijednosti R² od 0,6505, MAE 
od 2,72 i RMSE od 3,63, što upućuje na snažnu usklađenost 
predviđenih i promatranih vrijednosti izvan skupa za učenje. 
Kombinirana, ponderirana agregacija SHAP vrijednosti kroz sve 
modele omogućila je stabilno rangiranje determinanti, pri čemu 
su AADT (PGDS), ograničenje brzine (LIMIT) i gustoća raskrižja 
(K.Int. P.T) prepoznati kao najutjecajniji čimbenici, a slijede 
ih uvjeti kolnika (PCI) i uzdužni nagib (Ave_Inc.). Operativna 
provjera usmjerena na prioritizaciju dodatno je pokazala da, 
pri pragu Wi ≥ 10,130 (prevalencija ≈ 20,5 %), model učinkovito 
koncentrira rizik (AUROC = 0,692; PR-AUC = 0,420; preciznost 
pri 10 % = 0,500; odziv pri 10 % = 0,286; lift pri 10 % = 2,857), što 
ga čini prikladnim za ciljane inspekcije i intervencije u uvjetima 
ograničenih resursa.
Glavni doprinosi ovog istraživanja su sljedeći: standardizirana 
usporedba modela ansambla i osnovnih modela izvan skupa 
za učenje, treniranih u jednakim uvjetima za predviđanje 
ponderiranog indeksa nesreća Wi; integrirani postupak 
rangiranja varijabli (ponderirani SHAP kroz šest modela) koji 

omogućuje smanjenje dimenzionalnosti bez znatnoga gubitka 
sposobnosti generalizacije te operativni okvir validacije 
koji povezuje rezultate regresije s praktičnom, rangiranom 
selekcijom visokorizičnih dionica.
Iako su rezultati obećavajući, oni i dalje ovise o granularnosti i 
pokrivenosti podataka (npr. detaljno stanje znakovlja na cesti, 
trenutno stanje kolnika, precizna geolokacija sudara i bogatiji 
klimatski deskriptori). Očekuje se da će proširenje i ažuriranje 
tih ulaznih podataka, uključivanje prostornih/vremenskih 
struktura i provođenje vanjske validacije na dodatnim 
mrežama poboljšati eksplanatornu vrijednost i prenosivost. 
U praksi rezultati upućuju na potrebu za kombiniranom 
strategijom upravljanja izloženošću i okruženjem brzine 
dopuštene u operativnome okolišu (npr. politike ograničenja 
brzine i upravljanje raskrižjima), uz održavanje i nadogradnju 
infrastrukture (stanje površine, odvodnja i vidljivost). 
Predložena metodologija pruža jasan, objašnjiv i praktično 
primjenjiv okvir za prioritizaciju sigurnosnih mjera na cestama 
u širokome opsegu.

LITERATURA
[1]	 World Health Organization: Road traffic injuries, Available at: 

https://www.who.int/news-room/fact-sheets/detail/road-
traffic-injuries (accessed March 2025)., 2024

[2]	 European Commission: Road Safety Statistics 2023, Available 
at: https://road-safety.transport.ec.europa.eu/european-road-
safety-observatory_en (accessed March 2025).

[3]	 State Statistical Office of the Republic of North Macedonia: 
MakStat - Statistical Database. Available at: https://makstat.stat.
gov.mk/PXWeb/pxweb/en/ (accessed March 2025), 2025

[4]	 Ziakopoulos, A., Yannis, G.: A review of spatial approaches in 
road safety, Accident Analysis & Prevention, 135 (2020), Paper 
105323, https://doi.org/10.1016/j.aap.2019.105323

[5]	 Aguero-Valverde, J., Jovanis, P.P.: Spatial analysis of fatal and injury 
crashes in Pennsylvania, Accident Analysis & Prevention, 38 (2006) 
3, pp. 618–625, https://doi.org/10.1016/j.aap.2005.12.006

[6]	 Silva, P.B., Andrade, M., Ferreira, S.: Machine learning applied to 
road safety modeling: A systematic literature review, Journal of 
Traffic and Transportation Engineering (English Edition), 7 (2020) 
6, pp. 775–790, https://doi.org/10.1016/j.jtte.2020.07.004

[7]	 Almahdi, A., Al Mamlook, R.E., Bandara, N., Almuflih, A.S., 
Nasayreh, A., Gharaibeh, H., Alasim, F., Aljohani, A., Jamal, A.: 
Boosting ensemble learning for freeway crash classification 
under varying traffic conditions: A hyperparameter optimization 
approach, Sustainability, 15 (2023) 22, Paper 15896, https://doi.
org/10.3390/su152215896

[8]	 Dong, S., Khattak, A., Ullah, I., Zhou, J., Hussain, A.: Predicting 
and analyzing road traffic injury severity using boosting-based 
ensemble learning models with SHAPley Additive exPlanations, 
International Journal of Environmental Research and Public 
Health, 19 (2022) 5, Paper 2925, https://doi.org/10.3390/
ijerph19052925

[9]	 Kovačević, M., Ivanišević, N., Petronijević, P., Despotović, V.: 
Construction cost estimation of reinforced and prestressed 
concrete bridges using machine learning. Građevinar, 73 (2021) 1, 
pp. 1–13, https://doi.org/10.14256/JCE.2738.2019

[10]	 Gatarić, D., Ruškić, N., Aleksić, B., Đurić, T., Pezo, L., Lončar, 
B.,  Pezo, M.: Predicting road traffic accidents-Artificial neural 
network approach. Algorithms, 16 (2023) 5, Paper 257, https://
doi.org/10.3390/a16050257

[11]	 Xiao, Y., Duan, Z.: An explainable multi-task deep learning 
framework for crash severity prediction using multisource 
data,Scientific Reports, 15 (2025), Paper 39226, https://doi.
org/10.1038/s41598-025-09226-1

[12]	 Behboudi, N., Moosavi, S., Ramnath, R.: Recent advances in traffic 
accident analysis and prediction: A comprehensive review of 
machine learning techniques, arXiv preprint, arXiv:2406.13968. 
https://doi.org/10.48550/arXiv.2406.13968, 2024

[13]	 Li, W., Luo, Z.: Research on traffic accident risk prediction method 
based on spatial and visual semantics. ISPRS International 
Journal of Geo-Information, 12 (2023) 12, Paper 496, https://doi.
org/10.3390/ijgi12120496

[14]	 Li, H., Chen, X.: Traffic accident risk prediction based on deep 
learning and spatiotemporal features of vehicle trajectories, PLOS 
ONE, 20 (2025) 7, Paper e0320656, https://doi.org/10.1371/
journal.pone.0320656

[15]	 Chen, F., Liu, X.Q., Yang, J.J., Liu, X.K., Ma, J.H., Chen, J., Xiao, 
H.Y.: Traffic accident severity prediction based on an enhanced 
MSCPO‑XGBoost hybrid model. Scientific Reports, 15 (2025), 
Paper 25729, https://doi.org/10.1038/s41598-025-00797-7

[16]	 Iranmanesh, M., Seyedabrishami, S., Moridpour, S.: Identifying 
high crash risk segments in rural roads using ensemble decision 
tree‑based models. Scientific Reports, 12 (2022), Article 20024, 
https://doi.org/10.1038/s41598-022-24476-z



Građevinar 12/2025

1199GRAĐEVINAR 77 (2025) 12, 1187-1199

Predviđanje nesigurnih cestovnih dionica pomoću strojnog učenja

[17]	 Lee, J., Kim, S., Heo, T.Y., Lee, D.: Identifying the roadway 
infrastructure factors affecting road accidents using interpretable 
machine learning and data augmentation, Applied Sciences, 15 
(2025, 5), Paper 501, https://doi.org/10.3390/app15020501

[18]	 Mengistu, A.K., Gedefaw, A.E., Baykemagn, N.D., Walle, A.D., 
Yehuala, T.Z., Alemayehu, M.A., Messelu, M.A., Assaye, B. T.: 
Predicting car accident severity in Northwest Ethiopia: A machine 
learning approach leveraging driver, environmental, and road 
conditions, Scientific Reports, 15 (2025), Paper 21913. https://doi.
org/10.1038/s41598-025-08005-2 

[19]	 Alshehri, A.H., Alanazi, F., Yosri, A.M., Yasir, M.: Comparing fatal 
crash risk factors by age and crash type using machine learning 
techniques, PLOS ONE, 19 (2024) 5, e0302171, https://doi.
org/10.1371/journal.pone.0302171

[20]	 Ahmed, S., Hossain, M.A., Ray, S.K., Bhuiyan, M.M.I., Sabuj, S.R.: A 
study on road accident prediction and contributing factors using 
explainable machine learning models: analysis and performance, 
Transportation Research Interdisciplinary Perspectives, 19 (2023), 
Paper 100814, https://doi.org/10.1016/j.trip.2023.100814

[21]	 Megnidio‑Tchoukouegno, M., Adedeji, J.A.: Machine learning for 
road traffic accident improvement and environmental resource 
management in the transportation sector (using UK STATS19 
data), Sustainability, 15 (2023) 3, Paper 2014, https://doi.
org/10.3390/su15032014

[22]	 Alpalhão, N., Sarmento, P., Jardim, B., de Castro Neto, M.: Assessing 
the risk of traffic accidents in Lisbon using a gradient boosting 
algorithm with a hybrid classification/regression approach, 
Transportation Research Interdisciplinary Perspectives, 21 (2025), 
Paper 101495, https://doi.org/10.1016/j.trip.2025.101495

[23]	 Guido, G., Shaffiee Haghshenas, S., Vitale, A., Astarita, V., Park, Y., 
Geem, Z.W.: Evaluation of contributing factors affecting number of 
vehicles involved in crashes using machine learning techniques in 
rural roads of Cosenza, Italy. Safety, 8 (2023) 2, Paper 28, https://
doi.org/10.3390/safety8020028

[24]	 Xiao, Y., Duan, Z.: An explainable multi-task deep learning 
framework for crash severity prediction using multisource 
data, Scientific Reports, 15 (2025), Paper 9226. https://doi.
org/10.1038/s41598-025-09226-1

[25]	 Public Enterprise for State Roads, Web-GIS Platform for Spatial 
Analysis and Visualization, Available at: http://62.77.137.99/pesr/
webgis/#/map (accessed March 2025).

[26]	 Ministry of Local Self-Government, Development Program for 
Planning Regions for the Period 2021–2026, Government of the 
Republic of North Macedonia, 2021.

[27]	 Doncheva, R., Ognjenović, S.: Proektiranje patishta, University “Ss. 
Cyril and Methodius” – Faculty of Civil Engineering, Skopje, ISBN: 
978-608-4510-60-4, 2024.

[28]	 Tobias, P., de León Izeppi, E., Flintsch, G., Katicha, S., McCarthy, 
R.: Pavement Friction for Road Safety: Primer on Friction 
Measurement and Management Methods, Federal Highway 
Administration (FHWA), Report No. FHWA-SA-23-007, 2023.

[29]	 Public Enterprise for State Roads, Web-GIS Platform for Spatial 
Analysis and Visualization, Available at: http://tdps.roads.org.mk/ 
(accessed March 2025).

[30]	 Gjeshovska, V., Taseski, G., Ilioski, B.: Intensive Precipitation in the 
Republic of North Macedonia, University “Ss. Cyril and Methodius” 
– Faculty of Civil Engineering, Skopje, ISBN: 978-608-4510-56-7, 
2024.

[31]	 Government of the Republic of North Macedonia, Ministry of 
Transport, Project Implementation Unit, Handbook on Black Spot 
Management (BSM), July 2024.

[32]	 Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: 
an overview, Wiley Interdisciplinary Reviews: Data Mining 
and Knowledge Discovery, 2 (2012) 1, pp. 86–97, https://doi.
org/10.1002/widm.53.

[33]	 Trajkovski, V.: How to Select Appropriate Statistical Test in 
Scientific Articles, Journal of Special Education and Rehabilitation, 
17 (2016) 3–4, pp. 5–28, https://doi.org/10.19057/jser.2016.7.

[34]	 Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical 
Learning: Data Mining, Inference, and Prediction. Springer Series 
in Statistics, https://doi.org/10.1007/978-0-387-21606-5, 
2001.

[35]	 Kuhn, M., Johnson, K.: Applied Predictive Modeling, Springer, 
https://doi.org/10.1007/978-1-4614-6849-3, 2013.

[36]	 Raschka, S.: Model Evaluation, Model Selection, and Algorithm 
Selection in Machine Learning, arXiv (2018), https://doi.
org/10.48550/arXiv.1811.12808.

[37]	 Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, 
A.: CatBoost: unbiased boosting with categorical features, arXiv 
(2017), https://doi.org/10.48550/arXiv.1706.09516.

[38]	 Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, 
T.Y.: LightGBM: A highly efficient gradient boosting decision tree, 
Advances in Neural Information Processing Systems 30 (NeurIPS 
2017), pp. 3149–3157, URL: https://papers.nips.cc/paper/6907-
lightgbm-a-highly-efficient-gradient-boosting-decision-tree

[39]	 Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
20 (1998) 3, pp. 226–239, https://doi.org/10.1109/34.667881

[40]	 Breiman, L.: Random Forests, Machine Learning, 45 (2001) 1, pp. 
5–32,https://doi.org/10.1023/A:1010933404324.

[4’]	 Friedman, J.H.: Greedy Function Approximation: A Gradient 
Boosting Machine. Annals of Statistics, 29 (2001) 5, pp. 1189–
1232, https://doi.org/10.1214/aos/1013203451.

[42]	 Ahmed, S., Hossain, M.A., Ray, S.K., Bhuiyan, M.M.I., Sabuj, S.R.: A 
study on road accident prediction and contributing factors using 
explainable machine learning models: analysis and performance, 
Transportation Research Interdisciplinary Perspectives, 19 (2023), 
Paper 100814, https://doi.org/10.1016/j.trip.2023.100814.

[43]	 Alshehri, A.H., Alanazi, F., Yosri, A.M., Yasir, M.: Comparing fatal 
crash risk factors by age and crash type using machine learning 
techniques, PLOS ONE, 19 (2024) 5, e0302171, https://doi.
org/10.1371/journal.pone.0302171.

[44]	 Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature 
Selection, Journal of Machine Learning Research, 3 (2003), pp. 
1157–1182, https://jmlr.org/papers/v3/guyon03a.html.

[45]	 Lundberg, S.M., Lee, S.I.: A unified approach to interpreting 
model predictions, Advances in Neural Information Processing 
Systems, 30 (2017), pp. 4765–4774,  https://doi.org/10.48550/
arXiv.1705.07874

[46]	 Molnar, C.: Interpretable Machine Learning, Second edition, self-
published, 2022, https://doi.org/10.1177/09726225241252009

[47]	 Chen, T., Guestrin, C.: XGBoost: A Scalable Tree Boosting System. 
Proceedings of the 22nd ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, (2016), https://doi.
org/10.1145/2939672.2939785.

[48]	 Patil, P., Du, J.H., Kuchibhotla, A.K.: Bagging in overparameterized 
learning: Risk characterization and risk monotonization, arXiv 
preprint arXiv:2210.11445, (2022), https://doi.org/10.48550/
arXiv.2210.11445.


