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1. Introduction

Road traffic accidents represent a major global threat to public
safety, particularly affecting the younger populations. According
to the World Health Organization, road crashes are the leading
cause of death among individuals aged 5 to 29 years, with
over 1.19 million annual fatalities [1]. Systematic measures
and infrastructure improvements have reduced mortality rates
in developed countries; by contrast, the average number of
fatalities in the European Union remains high, at 45.5 per million
inhabitants [2].

In the Republic of North Macedonia, the situation is even
more concerning, with 69.5 fatalities per million inhabitants
[3], which is significantly above the European average.
These figures highlight the urgent need for developing new
analytical approaches to improving road safety, enabling timely
identification of high-risk segments, and planning appropriate
interventions.

Modern analytical techniques, such as machine learning and
spatial-statistical methods, facilitate a proactive approach
to detecting unsafe road sections before critical events occur.
These technologies enable the identification of hazardous
zones based on the influence of multiple factors as opposed to
relying solely on historical accident data.

This study primarily aimed to develop a methodology for
predicting unsafe road sections based on an analysis of
road geometric characteristics, pavement conditions, traffic
intensity, and external factors. Data from 161 sections of the
primary road network, covering approximately 1300 km, were
used in this study. Advanced machine learning models can be
applied in identifying key factors that influence the weighted
accident index (Wi) and developing predictive tools to enhance
road safety.

Previous research has shown that the risk of road traffic
accidents is influenced by various factors, such as longitudinal
slope, curvature radius, pavement condition, lane width, and
limited visibility [4-6]. Machine learning models, particularly
the random forest (RF) and gradient boosting (GB) algorithms
(XGBoost and CatBoost), have been increasingly employed
to analyse such parameters owing to their ability to handle
complex, nonlinear relationships and identify the most
influential variables [7, 81.

Similar approaches have also been applied in the domain
of infrastructure cost estimation, wherein ensemble
learning techniques such as RF and boosting models have
demonstrated strong predictive capabilities in capturing
complex interactions between multiple input features [S].
Studies have also demonstrated the application of artificial
neural networks (ANNs) for modelling crash frequency,
particularly in cases with limited or partially available data;
nevertheless, their interpretability remains restricted [10].
Several recent studies has reported on the use of SHapley
Additive exPlanations (SHAP) analysis as a supplementary
tool for interpreting the results from highly accurate models,

thereby enabling a better understanding of the relative
importance of factors such as traffic volume, road type, and
mountainous terrain [11].

Additionally, composite indices and predictive risk maps
have been developed wherein data are categorised based
on the influence level and ranking instead of a simple binary
classification [12, 13]. These approaches have proven useful for
resource allocation and the prioritisation of interventions.
However, most existing analyses have been conducted in
countries with well-developed data collection systems.
In the context of the Republic of North Macedonia and
the broader region, there is a lack of models that account
for local constraints and the absence of comprehensive
datasets [14]. This study aimed to address this gap by
applying several machine learning models (XGBoost, RF,
GB, CatBoost, LightGBM, and multilayer perceptron (MLP)),
gradually reducing the number of input variables based on
their influence on Wi. Thus, high-risk road sections were
identified using representative national data.

2. Literature review

Research on predicting traffic accidents and their severity
increasingly involves the application of advanced machine
learning algorithms and explainable models for analysing
influential factors. This section presents a review of relevant
studies that have employed state-of-the-art techniques to
forecast crash occurrences using real-world data and provides
an overview of the geographic scope, number of cases, applied
models, and performance metrics.

In a study conducted in Chinga, Chen et al.[15] employed a hybrid
MSCPO-XGBoost model on a dataset of 13,000 cases, achieving
a coefficient of determination (R?) = 0.918. They analysed
factors related to crash severity by combining optimisation
and machine learning. Iranmanesh et al. [16] apply XGBoost,
decision tree (DT), and RF models on data from 784 crashes
on rural roads in a province in Iran, achieving a maximum R?* of
0.873. They applied these models to identify road segments
with a high accident risk.

In a study using data from South Korea, Lee et al. [17] applied
an interpretative approach with data augmentation to 11,689
records by using SHAP to identify infrastructure-related
influences and achieved R* = 0.842. Mengistu et al. [ 18] analysed
1,037 cases involving drivers, roads, and environmental data
in Ethiopia by applying XGBoost, achieving R* = 0.863. In both
studies, model transparency in the factor explanation was
highlighted as a key advantage.

Alshehri et al. [19] used DT and RF models on a dataset of
3,228 crashes in Saudi Arabia; they achieved an AUC (Area Under
Curve) of up to 0.78 for predicting fatality across age groups
and crash types. Additionally, the best-performing model
achieved a precision of 0.81 and recall of 0.75, indicating a well-
balanced capability to detect positive cases. Ahmed et al. [20]
analysed 3,146 incidents in New Zealand by using explainable
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Table 1. Comparative summary of representative studies

References Region/Scope Task Models Size Metrics
Chenetal.[15] China (nationwide) Regression (severity) MSCPO-XGBoost 13.000 R*=0.918
Iranmanesh et al. [16] Iran (rural roads) .Regressmn XGBoost, DT, RF 784 R*(maks.) = 0.873
(risk/segments)
South Korea . Interpretable ML + -
Leeetal.[17] (national) Regression + XAl SHAP 11.689 R*=0.842
Mengistu et al. [18] Eth.IOpla Regression (severity) XGBoost 1037 R*=0.863
(regional)

. Saudi Arabia Classification AUC = 0.78;

Alshehriet al. [19] (multi-city) (fatality risk) DT. RF 3228 Precision = 0.81; Recall = 0.75
Ahmed et al. [20] New Zealand Hybrid (regression + XGBoost, LIME 3146 R® = 0.839; AUC = 0.87
(urban) classification)
Alpalhio et al. [22] port”%j:b‘aﬁ')sab"” Hybrid (GB) GB 28,649 RMSE = 0,332

models such as XGBoost and local interpretable model-
agnostic explanations (LIME), achieving R* = 0.839. As regards
the classification component, the best model achieved an AUC
of 0.87, highlighting its consistent performance in predicting
severity levels. Furthermore, the practical applicability of these
models is emphasised through factor impact visualisation.
Megnidio-Tchoukouegno and Adedeji [21] utilised the
STATS19 database containing 45,000 records from the
United Kingdom. They applied GB and RF models, with the
best model achieving an R* value of 0.881. Alpalhdo et al.
[22] analysed 28,649 cases from Lisbon by using a hybrid
regression/classification GB model, with a reported root
mean square error (RMSE) of 0.332. These studies are
particularly important for urban areas where data availability
enables complex modelling. Guido et al. [23] focused on
the Cosenza region in Italy with 1,349 cases and employed
XGBoost, support vector machine, and RF models. The
highest R* achieved was 0.896, and the models were used
to analyse the number of vehicles involved and the road
characteristics. Through geospatial analysis and machine
learning, they demonstrated the applicability of the models
in rural environments.

Xiao and Duan [24] developed a deep learning framework for
multitask prediction by using input data from 10,563 cases,
achieving R* = 0.894 and mean absolute error (MAE) = 0.243.
Their study included a detailed SHAP analysis to visualise the
contribution of each variable. It combined interpretability and
multifunctionality in analysing crash severity.

Table 1 provides a concise overview of representative studies
(region/scope, task, models, sample size, and metrics) for easier
and more transparent cross-study comparisons, enabling
a methodologically consistent assessment of the reported
findings.

Building upon the reviewed research, this study applied
six machine learning models (CatBoost, GB, XGBoost, RF,
LightGBM, and MLP), all trained under the same conditions. The
key contribution of this study lies in the systematic comparison

of model performances in Wi prediction, along with the
development of a methodology for parameter ranking based on
combined feature importance scores. Furthermore, the results
have practical implications in identifying high-risk segments in
target road networks.

3. Data overview
3.1. General Information on the Road Network

The road network in the Republic of North Macedonia has a
total length of 14,475 km and is classified into motorways,
regional roads, and local roads [25]. The primary road network,
which is 897 km long, represents a key segment of the national
and trans-European transport infrastructure [26]. It includes
motorways, expressways, and two-lane roads that provide
the main traffic connections across the country and with
neighbouring countries.

Figure 1. Overview of category A roads
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This study focused on the primary roads A1, A2, A3, and
A4, which differ in technical characteristics and geometric
elements. As illustrated in Figure 1, although the official
length of the primary road network is 897 km, the
analysis covers approximately 1,300 km because of the
separate treatment of the two road directions with divided
carriageways (motorways). This approach enables a more
detailed and objective assessment of the impacts of various
factors on road safety.

3.2. Description and Processing of Data

Combining temporal categorisation and classification by
characteristics yields a comprehensive and systematic approach
to data processing. Temporal categorisation highlights changes
over the years, while classification by characteristics allows for
a precise understanding of the role and impact of each individual
factor. The data were processed using GIS tools, statistical
techniques, and machine learning methods, and the spatial and
temporal trends were identified.

The final analytical database comprises 161 road sections
(=1,300 km) with complete records for the period 2014-2023.
Before modelling, all layers were re-projected onto WGS 84,
spatially joined by a kilometre mark, and cross-checked against
duplicate IDs.

Road characteristics

This category included various geometric and functional
parameters such as speed limits, alignment curvature, curve
radii, longitudinal slopes, and elevation. In addition, the side
forces in the curves, stopping sight distance, pavement
roughness, rut depth, surface friction coefficient, and
pavement condition index (PCI) were analysed. Data regarding
the density of intersections, bridges, and viaducts, as well as
the conditions of vertical and horizontal signage, were also
included [27, 28].

Traffic characteristics

Traffic intensity is expressed through the annual average daily
traffic (AADT) based on fixed and mobile automatic traffic
counts. This parameter provides insights into the impact of
traffic volume on accident risk [29].

Environmental characteristics

Climatic factors are represented by the average and extreme
annual values for precipitation and temperature collected
over a ten-year period from relevant meteorological stations.
The data were processed using geospatial methods to
ensure high-resolution coverage at the level of individual
road sections [30].

Traffic accident data

The frequency and spatial distribution of traffic accidents were
analysed using the index Wi, which considers both the number
and severity of crashes. Fatal, injury, and property-damage-only
accidents were weighted 85, 10, and 1, respectively, after which
the score was normalised by the section length. This index
serves as a key indicator for comparing the safety performances
of different road sections [31].

Quality control included imputation of less than 3 % missing
continuous values with the median of each variable, one-hot
encoding of categorical indicators, and z-score standardisation
of all continuous inputs. The geometric, traffic, and inventory
layers were sourced from the official WebGIS portal of the
Public Enterprise for State Roads, ensuring the consistency of
measurement and attribution. Appendix B provides a complete
list of variable definitions and composite index formulas.

3.3. Statistical summary of the dataset
The descriptive analysis begins with the training subset,

wherein 80 % of the data were rescaled to the 0—-1 interval to
highlight the relative ranges of all input variables and the output
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Figure 2. Normalized boxplot of input variables and Wi: training set
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Figure 3. Normalized boxplot of input variables and Wi: test set

parameter (i.e. Wi). The diagram in Figure 2 reveals pronounced
interquartile ranges for most parameters, while the isolated
dots mark road sections that deviate substantially from the
typical pattern - particularly for Wi, PGDS, and PCI.
Theremaining 20 % of the data formed the test subset, processed
using the same normalisation procedure. The distributions
shown in the second diagram retain the shape and width of the
interquartile ranges observed in the training set, indicating that
the split is statistically representative and that the models are
not exposed to a systematically different distribution of values
during validation.

Figure 3 presents the distribution of variables in the test
subset, enabling a direct comparison with the training data. The
consistency between the two subsets provides a sound basis
for assessing the general applicability of the developed models.
Meanwhile, the discernible differences in box lengths and the
number of outliers for individual variables underscore the
contribution of each parameter to the variability in road safety
conditions across the analysed sections.

4, Methodological Approach for the
Development of the Weighted Accident Index
(Wi) Prediction Model

A structured seven-step process that entails model selection,
tuning, feature optimisation, and evaluation was applied to
develop areliable and interpretable model for predicting Wi. This
methodology ensures the gradual refinement of both the model
structure and input variables, with careful separation between

Feature
influence

&
reduction

Parameter
tuning

Initial

Pick top

screen models

exploratory analysis and formal validation. The workflow is
illustrated in Figure 4.

Initial model screening

An initial exploratory comparison of nine different machine
learning models was performed. These include linear models,
DT-based models, boosting techniques, kernel-based models,
and neural networks. This comparison served to identify
algorithms with promising predictive potential on the basis of
general trends in R* and error metrics [32, 33].

Model selection

Based on preliminary results, models that achieved an R* > 0.50
were considered sufficiently reliable to be included in the formal
validation process.

Hyperparameter tuning

For each selected model, a 20-iteration random search was
conducted on the 80 % training subset to identify suitable
hyperparameters. The final tuned hyperparameters used in
the subsequent 80/20 evaluation are presented in Table 2; all
the metrics presented herein were computed using the held-
out test set. A fixed random_state = 42 was used across all
procedures to ensure reproducibility.

Feature selection and robustness analysis

The full set of 23 input parameters was gradually reduced in
size by using the SHAP and permutation-based methods,
and the performance was monitored after each removal. The

Train/
test
80/20

Integration

(weighted
SHAP)

Figure 4. Linear workflow for the development of the Wi-prediction model
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Table 2. Final hyperparameters for each algorithm (80:20 split)

Model Final hyper-parameters

XGBoost (final predictor)

n_estimators = 100; max_depth = 4; learning_rate = 0.3 (default); random_state = 42

Gradient Boosting (GB)

n_estimators = 100; max_depth = 4; learning_rate = 0.1 (default); random_state = 42

Random Forest (RF)

n_estimators = 100; max_depth = 4; min_samples_split = 2; random _state = 42

CatBoost (CB)

iterations = 1000; depth = 6; learning_rate = 0.03; random _state = 42

LightGBM (LGBM)

n_estimators = 300; learning _rate = 0.03; max_depth = 4; min_child_samples = 10; random _state = 42

Multilayer Perceptron (MLP)

hidden_layer_sizes = (100, 50); activation = “relu”; alpha = 0.0005; max_iter = 1000; random _state = 42

final selection only included the most influential features for
each model. Selection stability was checked using correlation-
based analyses across random seeds/model variants [34, 35].
Permutation-based importance was quantified by the decrease
in R* when each variable was shuffled.

Training and testing (80/20 split)

With optimised hyperparameters and reduced feature sets,
each model was trained on 80 % of the data and tested on
the remaining 20 %. This facilitated unbiased performance
evaluations based exclusively on the test set [35, 36]. The
performance is reported as R* (%), MAE, and RMSE for the held-
out test set.

Integration for interpretability (no predictive ensemble)

No separate predictive ensemble was used, and integration
served only to derive a robust cross-model ranking through
weighted SHAP, with the contribution of each model being
proportional to its R* value [39].

Final model formulation

The final prediction module is the single best-performing model
selected under the 80/20 evaluation protocol (XGBoost with
15 inputs), with all metrics reported based on out-of-sample
evaluation. If the model is subsequently refitted on the entire
dataset, this is solely for deployment on new sections, while the
reported results remain based on the 80/20 evaluation [46].
This methodology provides a coherent and reproducible
framework for Wi prediction. Each step, from initial model
screening to final deployment, was carefully structured to
ensure transparency, robustness, and scientific rigor. The
selected models, along with their tuning and validation
procedures, made the developed tool accurate and practically
applicable in road safety assessment contexts.

5. Analytical assessment of the performance of
predictive models

The evaluation of various machine learning approaches to
predict Wi is presented in stages. The evaluation covers the
R? values of the models during training with the full dataset,
testing using an 80/20 split, selection of optimal parameters,
and development of the final predictive model.

5.1. Indicative training evaluation and model
screening

In the initial phase of the analysis, all the selected models were
trained using the entire dataset. This approach enabled a rapid
assessment of the capabilities of the different methods for the
predictive modelling of Wi[43, 45]. The analysis included various
mathematical approaches, such as linear models, DT-based
models, boosting models, kernel methods, and ANNs.

These nine models were selected on the basis of their
compatibility with the nature of the available data and their
proven applicability in previous road safety studies [6, 8].

The training results demonstrate the general potential of the
models and were used to identify those suitable for further
analysis. The selection criterion was achieving an R* value
greater than 50 %, which was considered the minimum threshold
for capturing the variability in Wi.

Figure 5 shows the initial performance of all nine models in
terms of their R* and RMSE values. Models with R* values above
50 % were considered adequate for modelling this type of data
and retained for further validation.

R2[%]

Machine learning models

Figure 5. Initial R* and RMSE performance of the nine predictive
models

As a result of this initial screening, six models, CatBoost [37],
MLP, XGBoost [47], LightGBM [38], GB, and RF [40], were
selected for further evaluation using the structured procedure
outlined in the methodology. The excluded models failed to
meet the threshold for explanatory power and were therefore
not considered in the subsequent optimisation steps.
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5.2. Defining the optimal number of influential Importance = R = R? . (2)
parameters

where R? . is the explained variance of the original model

A combined analysis was conducted using SHAP values and ~ and R? . is the value obtained after permuting the values

permutation importance to elucidate the influence of individual
parameters on Wi. Both techniques provide a transparent
interpretation of the role of each input variable in the final
prediction, which is essential for drawing practical conclusions
and defining the forecasting formulas.

The SHAP values originate from game theory and express
the contribution of each parameter to a particular prediction.
These values correspond to the principle of fair distribution of
influence on the output of the model. SHAP provides nuanced
insights into which parameters exert the greatest influence
and whether that influence is positive or negative based on the
direction and magnitude of the values [42-44]. The value for a
parameter /can be calculated as follows:

®= Y

ScF\{i}

{11 |]-1)"

T ()

[r(sufi)-r(s)]

where @, represents the SHAP value for parameter j, Sis a
subset of the remaining parameters, and fi9) is the model
output for the input set S.

of parameter /. The greater the difference, the more influential
is the parameter on the model predictions.

For five of the six models (GB, RF, CatBoost, LightGBM, and
XGB), the same SHAP explainer based on TreeExplainer was
used, whereas for the MLP model, KernelExplainer was used
because of its neural network structure.

Figure 6 shows the normalised importance of each of the 23
parameters compared across models. The numbers in the
squares represent absolute SHAP values rounded to two
decimal places, while the colour visually indicates the relative
importance on a scale from O to 1. This visualisation enables a
direct comparison of the parameter influences across all models;
PGDS, LIMIT, and K.Int. PT are clearly the most consistently
influential parameters. Simultaneously, parameters such as
KON.NAK., H sign, and Max_Temp show lower or selective
importance only in individual models.

To finalise the parameter ranking, the SHAP values obtained
from the six models were weighted according to their respective
R? values from the 80/20 set analysis. These values are listed
in Table 3.

Gradevinar 12/2025

Additionally, the SHAP methodology facilitates indirect Table 3. R* performance values used as weights in the final SHAP
observation of interactions between parameters through their computation
cumulative effect on the output of the model. -
o P ) ) Model R® score Weight
A permutation importance analysis was conducted to verify
these results. This approach assesses the importance of each Gradient Boosting (GB) 05381 0.225
parameter by measuring the change in the model performance Random Forest (RF) 0.5126 0.214
when the values of a particular parameter are replaced with
. L CatBoost (CB) 0.4664 0.195
permuted values. If this replacement causes a significant
decrease in accuracy, the parameter is considered highly LightGBM (LGBM) 0.3447 0.144
influentia [40]. The influence of the parameter is defined by the Multilayer Perceptron (MLP) 0.1607 0.067
difference in the R? values, as follows:
XGBoost (XGB) 0.1043 0.044
10 T
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Figure 6. Normalized SHAP feature importance values across all models
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Figure 7. Feature Importance (weighted SHAP values)

Furthermore, to integrate the results from all the models into a
synthetic assessment, a weighted SHAP value was calculated
for each parameter, as follows:
5= W, S+ W, S, ++ W S (3)
Equation (3) represents the sum of the products of SHAP values
for a given parameter j obtained from each of the six models
(Sﬂ, 5/2, 5/.6) and their corresponding weights (w,, w,, ..., W),
which were determined in proportion to the R* accuracy of each
model. This yields a resultant SHAP value that integrates all the
models into a unified importance metric.

Figure 7 shows the resulting influence values for each parameter,
expressed using the weighted SHAP value. This bar chart
enables the ranking of parameters according to their aggregated
importance across all models. The highest values were observed
for PGDS, LIMIT, and K.Int. PT, indicating their consistent and
dominant influence on the predictions across all the models. By
contrast, parameters such as KON.NAK., Max_Temp, and H sign
showed the lowest weighted SHAP values, suggesting that their
effect on the output variable was minimal or only selectively
significant in a limited number of models. This diagram allows for
a visual assessment of the key factors for future analyses and
potential reduction in the number of variables.

For further analysis, the parameters were ranked based on their
weighted SHAP values, with the goal of gradually reducing the
number of variables. This approach enables the identification
of the most influential parameters without a classic stepwise
method but with an integrated evaluation across all models.

5.3. Optimization of the number of parameters and
selection of the most accurate model

In this phase, the six models were evaluated for their capability
to predict Wi, with a focus on how prediction accuracy (i.e. R?)

changes as the number of input parameters is reduced. The
analysis was based on an 80/20 data split, with parameters
sequentially removed according to their predefined importance
rankings [41].

For each iteration, a subset of the most relevant features
is selected, followed by model training and testing for the
same split. The MLP model included input standardisation
through a pipeline, whereas the LightGBM model employed
specialised hyperparameters to control model complexity. A
fixed random _state of 42 was used to ensure reproducibility
of the results.

Figure 8illustrates the variation of the R* values across different
numbers of parameters for each model. The graph enables
a visual comparison of the sensitivity and robustness of the
model to dimensionality reduction. Notably, certain models,
such as GB, exhibit stable performance over a wider parameter
range, whereas others, such as MLP, show sharp fluctuations,
particularly with fewer inputs.

Table 4 presents the maximum R? value achieved by each model,
along with the corresponding number of parameters sorted in
descending order of accuracy.

Table 4. Maximum R* ( %) and corresponding number of parameters
for each model

Model R* [%] Number of parameters
XGBoost 65.05 15
GB 57.13 7
MLP 56.39 9
LightGBM 55.21 9
CatBoost 52.06 7
RF 48.40 6
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Figure 8. Variation of R* (%) with number of input parameters for all models

Based on these results, XGBoost was identified as the most
suitable model for further applications, having achieved the
highest R* value. Although GB and CatBoost operate with
fewer parameters, they afford competitive accuracy and exhibit
high stability, making them remarkably effective when data
availability is limited. MLP and LightGBM achieved similar R*
values but only under specific parameter conditions and with
less consistency across the range.

These findings indicate that selecting the appropriate model
and number of parameters can significantly improve prediction
accuracy, even without relying on the full set of input variables.
This analysis supports the formulation of a balanced trade-off
between dimensionality and model stability, which is crucial for
practical implementation.

5.4. Testing and validation

The process of testing and validation is essential to determine
whether the developed predictive model for Wi is stable,
accurate, and applicable in real-world conditions. As detailed
in this section, regression-based testing was used to quantify
the accuracy of the predictions, while classification-based
validation was employed to examine the ability of the model to
identify and rank higher-risk sections so as to support practical
decisions on road safety interventions.

5.4.1. Testing (regression, 80/20)

The XGBoost model, trained on the 15 most influential
parameters (defined via SHAP analysis), was evaluated using an

80 % for training and 20 % for test. The “Predicted vs. Actual”
comparison with the ideal y = x line facilitates a direct visual
examination of the agreement between model outputs and
observed Wi values (Figure 9).
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Figure 9. Comparison of predicted and actual Wi values from XGBoost
with 80/20 training/test split

Most points were clustered near the ideal line, with the expected
but limited spread at the extremes. Quantitatively, R* = 0.6505
indicates that a substantial share of the variance in Wi can be
attributed to the model, while MAE = 2.72 and RMSE = 3.63
confirm moderate absolute and quadratic errors. Collectively,
these results support the use of XGBoost as a solid basis for
operational, section-level risk assessment.
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5.4.2. Validation (classification for risk prioritization)

Beyond accurate regression predictions, practical deployment
requires the model to prioritise the highest-risk sections at
the top of the ranked list. The regression model was adapted
to a classification setting with the threshold Wi = 10.130
(prevalence = 20.5 %) in order to assess this aspect, and the
performance was summarised over 100 bootstrap iterations.
The choice of class-imbalance-aware metrics (precision/
recall at fixed inspection rates, PR-AUC) and rank-oriented
diagnostics (gains/lift) is methodologically appropriate for
prioritisation tasks in road safety analytics and aligns with
recent applications of machine learning in crash risk modelling
[42, 43]. Aggregated results (medians with 95 % Cl) are
summarised as follows:

- AUROC: 0.692 [0.519, 0.834]

- PR-AUC: 0.420[0.229, 0.696]

- Precision at 10 %: 0.500 [0.250, 0.750]

- Recall at 10 %: 0.286 [0.143, 0.429]

- Liftat 10 %: 2.857 [1.429, 4.286]

Figure 10 presents the gains curve. Inspecting only the top
10 % of road sections using the model's risk scores identified
approximately half of all truly high-risk sections. This marks
a significant improvement over random selection and a clear
indication of operational usefulness for ranking.

Figure 10. Gains curve for identifying sections with Wi =z 10.130
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Figure 11 shows the lift curve, which quantifies the advantage
relative to random choice. In the top 10 % of the ranking, lift
is approximately 2.9, implying that the model concentrates a
markedly greater share of ‘positive’ cases near the top precisely
the behaviour desired for effective prioritisation.

Collectively, the classification-based validation demonstrates
that the mode delivers accurate Wi predictions and effectively
ranks sections by risk. Combined with the regression test results,
this provides a consistent and sufficiently strong confirmation
of the practical applicability of the model for systematic road
safety planning.
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Figure 11. Lift curve for evaluating relative gain in ranked selection
(bootstrap median, 100 iterations)

6. Discussion of the results
6.1. Analysis of the results

The analysis covered six models (XGBoost, CatBoost, GB,
RF, LightGBM, and MLP) and followed two tracks: R*-based
evaluation (R?, MAE, and RMSE) under an 80/20 train—test
split and explainability via SHAP and permutation importance.
The variable influence was computed for all six models and
averaged with weights proportional to the R* value of each
model from the 80/20 evaluation protocol ( GB: R* = 0.5381,
weight = 0.225; RF: R* = 0.5126, weight = 0.214; CatBoost:
R* = 0.4664, weight = 0.195; LightGBM: R* = 0.3447, weight =
0.144; MLP: R* = 0.1607, weight = 0.067; and XGB: R* = 0.1043,
weight = 0.044). This weighted SHAP aggregation produces a
unified cross-model ranking that is stable and less sensitive to
the idiosyncrasies of a single algorithm.

The resulting rankings show that the PGDS (AADT), LIMIT, and
K.Int. PT. were the most consistently influential factors, with PCl
and Ave _Inc among the leading infrastructure/geometry variables.
Conversely, KON.NAK., H sign, and Max_Temp exhibit selective/
low influence. Mechanistically, exposure and operating conditions
increase the baselinerisk, while pavement conditions and geometry
modulate it through friction, stability, and sight conditions.
Ablation analysis (R* as a function of the number of inputs)
indicated a clear trade-off between compactness and
accuracy. Peak R* ( %) and optimal input counts per model
are as follows: 65.05 (15 inputs) for XGBoost; 57.13 (7) for
GB; 56.39 (9) for MLP; 55.21 (9) for LightGBM; 52.06 (7) for
CatBoost; and 48.40 (6) for RF. Thus, the best generalisation
is achieved with a reduced yet informative subset, as opposed
to a full input space.

In the formal 80/20 validation, XGBoost [47] with 15 SHAP-
permutation-selected inputs achieved R* = 0.6505, MAE =
2.72,and RMSE = 3.63, with test points concentrated around
the ideal y = x line, confirming a strong agreement between
the predicted and observed Wi values.

For operational validation (prioritisation), the regression
output was adapted to a classification scenario using the
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threshold Wi = 10.130 (prevalence = 20.5 %) and 100x
bootstrap summarisation. The results were as follows:
AUROC = 0.692, PR-AUC = 0.420, Precision@10 % = 0.500,
Recall@10 % = 0.286, and Lift@10 % = 2.857. These
results imply that inspecting only the top 10 % of segments
captured a substantially larger share of truly high-risk
segments than random selection (as also evident from the
gains/lift curves).

In summary, 15 inputs are sufficient for stable generalisation
in XGBoost; GB and CatBoost deliver competitive performance
with even fewer inputs (useful under data constraints).
Beyond predicting Wi with strong out-of-sample agreement
(R?), the approach effectively concentrates the highest-risk
segments at the top of the list for inspection and intervention.
Interpretation relies on validated (out-of-sample) results;
fits obtained on the full development set were used only
exploratorily and not for formal evaluation.

6.2. Comparison with previous research

The validated results for Wi under an 80/20 split (XGBoost, 15
inputs: R* = 0.6505, MAE = 2.72, RMSE = 3.63) were aligned
with current practices that favour tree-based ensembles and
explainability (SHAP). In the regression studies summarised
in Table 1, reported R* values typically fall in the vicinity of
0.84 to 0.92 for national/urban settings with larger and richer
datasets [15,17,18,21,23]. In hybrid/interpretability-focused
settings with an urban emphasis, results are commonly
in the vicinity of R* = 0.83 to 0.87 [20]. These differences
are expected, arising from target mismatch (while many
studies predict severity, this study modelled continuous Wi),
spatial scale, and attribute richness. Hence, comparisons are
intended to be methodological (emphasising the combined
use of boosting and explainable artificial intelligence (XAl))
rather than direct numerical equivalence.

In classification and hybrid setups, studies have typically
reported AUC/PR-AUC/precision/recall, with AUC
approximately within 0.78 to 0.87 depending on task and
data [19-20]. For operational comparability, a prioritisation
check was also conducted in this study: at a threshold of
Wi = 10.130 (prevalence = 20.5 %; 100x bootstrap), the
results are AUROC = 0.692, PR-AUC = 0.420, Precision@10
% = 0.500, Recall@10 % = 0.286, and Lift@10 % = 2.857,
indicating effective concentration of the highest-risk
segments at the top of the list. The higher R*/AUC values
reported in the literature are partly attributable to larger
and richer datasets (spatially and temporally), which provide
broader variability and more efficient learning; the setup
with 161 segments naturally imposes stricter conditions
for generalization.

Regarding determinants, the findings indicate that exposure
and operating environment (PGDS/AADT, speed limit, and
intersection density) dominate, while pavement condition
and geometry (PCl, longitudinal grade) modulate risk.

These are consistent with studies that combine boosting
with SHAP for explainability [17, 20, 24]. This supports the
use of weighted SHAP aggregation 'across models’ and
justifies input reduction without materially compromising
generalisation.

In summary, the out-of-sample results are in line with
contemporary approaches (ensemble-based approaches
coupled with SHAP) and are operationally useful for
prioritisation. Table 1 serves as a reference frame for a
methodologically consistent comparison of the tasks,
metrics, and scales.

7. Limitations and future directions

Although the application of advanced machine learning
models demonstrated validated out-of-sample performance
(R* = 0.6505; MAE = 2.72; RMSE = 3.63) in predicting Wi,
certain limitations need to be considered.

Careful management of the risk of overfitting is necessary,
particularly for models involving a large number of
parameters [48]. In the classification-based validation
used for prioritisation, performance was bounded by the
class prevalence (~20.5 %); this should be considered when
interpreting AUROC/PR-AUC.

The main limitation arises from the availability and detail of
the input data. Updated information regarding the condition
of vertical and horizontal road signage, current state of road
pavements, and complete climatic parameters is lacking.
Furthermore, the traffic accident data were limited in terms
of detailed descriptions of causes, conditions at the time
of accidents, and exact geographic locations of incidents,
thereby influencing the precision of the models.

The models were trained using data from the main road
network. Thus, applying the same approach to other road
categories would require additional adaptation.

For future research, it is recommended to expand the database to
include information on the current condition of the infrastructure,
more specific climatic conditions, and factors related to road user
behaviour.

Moreover, the use of combined algorithms and explainable
machine learning techniques can further improve the predictive
accuracy and interpretability of the model results.

8. Conclusion

This study demonstrated that advanced machine learning
methods can reliably predict Wi at the road segment level
and support operational decision-making. Under formal
80/20 validation, XGBoost with 15 SHAP-permutation-
selected inputs achieved R* = 0.6505, MAE = 2.72, and
RMSE = 3.63, indicating a strong out-of-sample agreement
between the predicted and observed values. A cross-
model, weighted SHAP aggregation, provided a stable
ranking of determinants with AADT (PGDS), speed limit
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(LIMIT), and intersection density (K.Int. P.T) as the most
influential, followed by the pavement condition (PCl) and
longitudinal grade (Ave_ Inc.). An operational check tailored
for prioritisation further showed that, at Wi = 10.130
(prevalence = 20.5 %), the model effectively concentrates
risk (AUROC = 0.692; PR-AUC = 0.420; Precision@10 % =
0.500; Recall@10 % = 0.286; Lift@10 % = 2.857), making it
suitable for targeting inspections and interventions when
resources are limited.

The main contributions of this study are as follows. a
standardised out-of-sample comparison of ensemble
and baseline models trained under equal conditions for
Wi prediction; an integrated variable-ranking procedure
(weighted SHAP across six models) that guides dimensionality
reduction without materially sacrificing generalisation; and
an operational validation framework that links regression
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