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Predicting unsafe road sections using machine learning

This paper presents an ML methodology to predict hazardous road segments, using the 
weighted accident index (Wi). The analysis covers 161 road segments in North Macedonia 
(~1,300 km)—with 23+1 variables categorized into Road, Traffic, Environmental, and 
Accident data. Feature influence is evaluated using six models with an 80/20 training/
testing split. Weighted SHAP is applied to obtain a single variable ranking; XGBoost with 
15 inputs is the final predictor. The model achieves a validated performance (R² = 0.65), 
while operational prioritization yields AUROC = 0.69 at Wi ≥ 10.13, enabling timely 
identification of hazardous segments and interventions by relevant authorities.
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Izvorni znanstveni rad

Riste Ristov, Slobodan Ognjenović, Zlatko Zafirovski

Predviđanje nesigurnih cestovnih dionica pomoću strojnog učenja

U ovome je radu opisana metodologija strojnog učenja za predviđanje opasnih cestovnih 
dionica primjenom ponderiranog indeksa nesreća (Wi). U analizu uključena je 161 cestovna 
dionica u Sjevernoj Makedoniji, ukupne duljine oko 1300 km, pri čemu su razmotrene 23 
varijable svrstane u skupine koje se odnose na cestu, promet, okoliš i nesreće. Utjecaj 
značajki vrednovan je primjenom šest modela, uz podjelu podataka na skup za učenje 
i skup za testiranje u omjeru 80 : 20. Primjenom ponderiranog SHAP-a izvedeno je 
jedinstveno rangiranje varijabli, dok je konačni prediktivni model XGBoost temeljen na 15 
ulaznih značajki. Potvrđena učinkovitost modela iznosi R² = 0,65, a u sklopu operativne 
prioritizacije postignut je AUROC = 0,69 pri Wi ≥ 10,13, što nadležnim institucijama 
omogućuje pravodobnu identifikaciju opasnih dionica i odgovarajuće intervencije.
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1. Introduction

Road traffic accidents represent a major global threat to public 
safety, particularly affecting the younger populations. According 
to the World Health Organization, road crashes are the leading 
cause of death among individuals aged 5 to 29 years, with 
over 1.19 million annual fatalities [1]. Systematic measures 
and infrastructure improvements have reduced mortality rates 
in developed countries; by contrast, the average number of 
fatalities in the European Union remains high, at 45.5 per million 
inhabitants [2].
In the Republic of North Macedonia, the situation is even 
more concerning, with 69.5 fatalities per million inhabitants 
[3], which is significantly above the European average. 
These figures highlight the urgent need for developing new 
analytical approaches to improving road safety, enabling timely 
identification of high-risk segments, and planning appropriate 
interventions. 
Modern analytical techniques, such as machine learning and 
spatial-statistical methods, facilitate a proactive approach 
to detecting unsafe road sections before critical events occur. 
These technologies enable the identification of hazardous 
zones based on the influence of multiple factors as opposed to 
relying solely on historical accident data.
This study primarily aimed to develop a methodology for 
predicting unsafe road sections based on an analysis of 
road geometric characteristics, pavement conditions, traffic 
intensity, and external factors. Data from 161 sections of the 
primary road network, covering approximately 1300 km, were 
used in this study. Advanced machine learning models can be 
applied in identifying key factors that influence the weighted 
accident index (Wi) and developing predictive tools to enhance 
road safety.
Previous research has shown that the risk of road traffic 
accidents is influenced by various factors, such as longitudinal 
slope, curvature radius, pavement condition, lane width, and 
limited visibility [4-6]. Machine learning models, particularly 
the random forest (RF) and gradient boosting (GB) algorithms 
(XGBoost and CatBoost), have been increasingly employed 
to analyse such parameters owing to their ability to handle 
complex, nonlinear relationships and identify the most 
influential variables [7, 8].
Similar approaches have also been applied in the domain 
of infrastructure cost estimation, wherein ensemble 
learning techniques such as RF and boosting models have 
demonstrated strong predictive capabilities in capturing 
complex interactions between multiple input features [9]. 
Studies have also demonstrated the application of artificial 
neural networks (ANNs) for modelling crash frequency, 
particularly in cases with limited or partially available data; 
nevertheless, their interpretability remains restricted [10]. 
Several recent studies has reported on the use of SHapley 
Additive exPlanations (SHAP) analysis as a supplementary 
tool for interpreting the results from highly accurate models, 

thereby enabling a better understanding of the relative 
importance of factors such as traffic volume, road type, and 
mountainous terrain [11].
Additionally, composite indices and predictive risk maps 
have been developed wherein data are categorised based 
on the influence level and ranking instead of a simple binary 
classification [12, 13]. These approaches have proven useful for 
resource allocation and the prioritisation of interventions.
However, most existing analyses have been conducted in 
countries with well-developed data collection systems. 
In the context of the Republic of North Macedonia and 
the broader region, there is a lack of models that account 
for local constraints and the absence of comprehensive 
datasets [14]. This study aimed to address this gap by 
applying several machine learning models (XGBoost, RF, 
GB, CatBoost, LightGBM, and multilayer perceptron (MLP)), 
gradually reducing the number of input variables based on 
their influence on Wi. Thus, high-risk road sections were 
identified using representative national data.

2. Literature review

Research on predicting traffic accidents and their severity 
increasingly involves the application of advanced machine 
learning algorithms and explainable models for analysing 
influential factors. This section presents a review of relevant 
studies that have employed state-of-the-art techniques to 
forecast crash occurrences using real-world data and provides 
an overview of the geographic scope, number of cases, applied 
models, and performance metrics.
In a study conducted in China, Chen et al. [15] employed a hybrid 
MSCPO-XGBoost model on a dataset of 13,000 cases, achieving 
a coefficient of determination (R²) = 0.918. They analysed 
factors related to crash severity by combining optimisation 
and machine learning. Iranmanesh et al. [16] apply XGBoost, 
decision tree (DT), and RF models on data from 784 crashes 
on rural roads in a province in Iran, achieving a maximum R² of 
0.873. They applied these models to identify road segments 
with a high accident risk.
In a study using data from South Korea, Lee et al. [17] applied 
an interpretative approach with data augmentation to 11,689 
records by using SHAP to identify infrastructure-related 
influences and achieved R² = 0.842. Mengistu et al. [18] analysed 
1,037 cases involving drivers, roads, and environmental data 
in Ethiopia by applying XGBoost, achieving R² = 0.863. In both 
studies, model transparency in the factor explanation was 
highlighted as a key advantage.
Alshehri et al. [19] used DT and RF models on a dataset of 
3,228 crashes in Saudi Arabia; they achieved an AUC (Area Under 
Curve) of up to 0.78 for predicting fatality across age groups 
and crash types. Additionally, the best-performing model 
achieved a precision of 0.81 and recall of 0.75, indicating a well-
balanced capability to detect positive cases. Ahmed et al. [20] 
analysed 3,146 incidents in New Zealand by using explainable 
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models such as XGBoost and local interpretable model-
agnostic explanations (LIME), achieving R² = 0.839. As regards 
the classification component, the best model achieved an AUC 
of 0.87, highlighting its consistent performance in predicting 
severity levels. Furthermore, the practical applicability of these 
models is emphasised through factor impact visualisation.
Megnidio-Tchoukouegno and Adedeji [21] utilised the 
STATS19 database containing 45,000 records from the 
United Kingdom. They applied GB and RF models, with the 
best model achieving an R² value of 0.881. Alpalhão et al. 
[22] analysed 28,649 cases from Lisbon by using a hybrid 
regression/classification GB model, with a reported root 
mean square error (RMSE) of 0.332. These studies are 
particularly important for urban areas where data availability 
enables complex modelling. Guido et al. [23] focused on 
the Cosenza region in Italy with 1,349 cases and employed 
XGBoost, support vector machine, and RF models. The 
highest R² achieved was 0.896, and the models were used 
to analyse the number of vehicles involved and the road 
characteristics. Through geospatial analysis and machine 
learning, they demonstrated the applicability of the models 
in rural environments.
Xiao and Duan [24] developed a deep learning framework for 
multitask prediction by using input data from 10,563 cases, 
achieving R² = 0.894 and mean absolute error (MAE) = 0.243. 
Their study included a detailed SHAP analysis to visualise the 
contribution of each variable. It combined interpretability and 
multifunctionality in analysing crash severity.
Table 1 provides a concise overview of representative studies 
(region/scope, task, models, sample size, and metrics) for easier 
and more transparent cross-study comparisons, enabling 
a methodologically consistent assessment of the reported 
findings.
Building upon the reviewed research, this study applied 
six machine learning models (CatBoost, GB, XGBoost, RF, 
LightGBM, and MLP), all trained under the same conditions. The 
key contribution of this study lies in the systematic comparison 

of model performances in Wi prediction, along with the 
development of a methodology for parameter ranking based on 
combined feature importance scores. Furthermore, the results 
have practical implications in identifying high-risk segments in 
target road networks.

3. Data overview

3.1. General Information on the Road Network

The road network in the Republic of North Macedonia has a 
total length of 14,475 km and is classified into motorways, 
regional roads, and local roads [25]. The primary road network, 
which is 897 km long, represents a key segment of the national 
and trans-European transport infrastructure [26]. It includes 
motorways, expressways, and two-lane roads that provide 
the main traffic connections across the country and with 
neighbouring countries.

Figure 1. Overview of category A roads

References Region/Scope Task Models Size Metrics

Chen et al. [15] China (nationwide) Regression (severity) MSCPO-XGBoost 13.000 R² = 0.918

Iranmanesh et al. [16] Iran (rural roads) Regression
(risk/segments) XGBoost, DT, RF 784 R²(maks.) = 0.873

Lee et al. [17] South Korea
 (national) Regression + XAI Interpretable ML + 

SHAP 11.689 R² = 0.842

Mengistu et al. [18] Ethiopia 
(regional) Regression (severity) XGBoost 1037 R² = 0.863

Alshehri et al. [19] Saudi Arabia 
(multi-city)

Classification 
(fatality risk) DT, RF 3228 AUC ≤ 0.78; 

Precision = 0.81; Recall = 0.75

Ahmed et al. [20] New Zealand 
(urban)

Hybrid (regression + 
classification) XGBoost, LIME 3146 R² = 0.839; AUC = 0.87

Alpalhão et al. [22] Portugal – Lisabon 
(urban) Hybrid (GB) GB 28.649 RMSE = 0.332

Table 1. Comparative summary of representative studies
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This study focused on the primary roads A1, A2, A3, and 
A4, which differ in technical characteristics and geometric 
elements. As illustrated in Figure 1, although the official 
length of the primary road network is 897 km, the 
analysis covers approximately 1,300 km because of the 
separate treatment of the two road directions with divided 
carriageways (motorways). This approach enables a more 
detailed and objective assessment of the impacts of various 
factors on road safety.

3.2. Description and Processing of Data

Combining temporal categorisation and classification by 
characteristics yields a comprehensive and systematic approach 
to data processing. Temporal categorisation highlights changes 
over the years, while classification by characteristics allows for 
a precise understanding of the role and impact of each individual 
factor. The data were processed using GIS tools, statistical 
techniques, and machine learning methods, and the spatial and 
temporal trends were identified.
The final analytical database comprises 161 road sections 
(≈1,300 km) with complete records for the period 2014–2023. 
Before modelling, all layers were re-projected onto WGS 84, 
spatially joined by a kilometre mark, and cross-checked against 
duplicate IDs.

Road characteristics
This category included various geometric and functional 
parameters such as speed limits, alignment curvature, curve 
radii, longitudinal slopes, and elevation. In addition, the side 
forces in the curves, stopping sight distance, pavement 
roughness, rut depth, surface friction coefficient, and 
pavement condition index (PCI) were analysed. Data regarding 
the density of intersections, bridges, and viaducts, as well as 
the conditions of vertical and horizontal signage, were also 
included [27, 28].

Traffic characteristics
Traffic intensity is expressed through the annual average daily 
traffic (AADT) based on fixed and mobile automatic traffic 
counts. This parameter provides insights into the impact of 
traffic volume on accident risk [29].

Environmental characteristics
Climatic factors are represented by the average and extreme 
annual values for precipitation and temperature collected 
over a ten-year period from relevant meteorological stations. 
The data were processed using geospatial methods to 
ensure high-resolution coverage at the level of individual 
road sections [30].

Traffic accident data
The frequency and spatial distribution of traffic accidents were 
analysed using the index Wi, which considers both the number 
and severity of crashes. Fatal, injury, and property-damage-only 
accidents were weighted 85, 10, and 1, respectively, after which 
the score was normalised by the section length. This index 
serves as a key indicator for comparing the safety performances 
of different road sections [31].
Quality control included imputation of less than 3 % missing 
continuous values with the median of each variable, one-hot 
encoding of categorical indicators, and z-score standardisation 
of all continuous inputs. The geometric, traffic, and inventory 
layers were sourced from the official WebGIS portal of the 
Public Enterprise for State Roads, ensuring the consistency of 
measurement and attribution. Appendix B provides a complete 
list of variable definitions and composite index formulas.

3.3. Statistical summary of the dataset

The descriptive analysis begins with the training subset, 
wherein 80 % of the data were rescaled to the 0–1 interval to 
highlight the relative ranges of all input variables and the output 

Figure 2. Normalized boxplot of input variables and Wi: training set
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parameter (i.e. Wi). The diagram in Figure 2 reveals pronounced 
interquartile ranges for most parameters, while the isolated 
dots mark road sections that deviate substantially from the 
typical pattern - particularly for Wi, PGDS, and PCI.
The remaining 20 % of the data formed the test subset, processed 
using the same normalisation procedure. The distributions 
shown in the second diagram retain the shape and width of the 
interquartile ranges observed in the training set, indicating that 
the split is statistically representative and that the models are 
not exposed to a systematically different distribution of values 
during validation.
Figure 3 presents the distribution of variables in the test 
subset, enabling a direct comparison with the training data. The 
consistency between the two subsets provides a sound basis 
for assessing the general applicability of the developed models. 
Meanwhile, the discernible differences in box lengths and the 
number of outliers for individual variables underscore the 
contribution of each parameter to the variability in road safety 
conditions across the analysed sections.

4. �Methodological Approach for the 
Development of the Weighted Accident Index 
(Wi) Prediction Model

A structured seven-step process that entails model selection, 
tuning, feature optimisation, and evaluation was applied to 
develop a reliable and interpretable model for predicting Wi. This 
methodology ensures the gradual refinement of both the model 
structure and input variables, with careful separation between 

exploratory analysis and formal validation. The workflow is 
illustrated in Figure 4.

Initial model screening
An initial exploratory comparison of nine different machine 
learning models was performed. These include linear models, 
DT-based models, boosting techniques, kernel-based models, 
and neural networks. This comparison served to identify 
algorithms with promising predictive potential on the basis of 
general trends in R² and error metrics [32, 33].

Model selection
Based on preliminary results, models that achieved an R² > 0.50 
were considered sufficiently reliable to be included in the formal 
validation process.

Hyperparameter tuning
For each selected model, a 20-iteration random search was 
conducted on the 80 % training subset to identify suitable 
hyperparameters. The final tuned hyperparameters used in 
the subsequent 80/20 evaluation are presented in Table 2; all 
the metrics presented herein were computed using the held-
out test set. A fixed random_state = 42 was used across all 
procedures to ensure reproducibility.

Feature selection and robustness analysis
The full set of 23 input parameters was gradually reduced in 
size by using the SHAP and permutation-based methods, 
and the performance was monitored after each removal. The 

Figure 3. Normalized boxplot of input variables and Wi: test set

Figure 4. Linear workflow for the development of the Wi-prediction model
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final selection only included the most influential features for 
each model. Selection stability was checked using correlation-
based analyses across random seeds/model variants [34, 35]. 
Permutation-based importance was quantified by the decrease 
in R² when each variable was shuffled.

Training and testing (80/20 split)
With optimised hyperparameters and reduced feature sets, 
each model was trained on 80 % of the data and tested on 
the remaining 20 %. This facilitated unbiased performance 
evaluations based exclusively on the test set [35, 36]. The 
performance is reported as R² ( %), MAE, and RMSE for the held-
out test set.

Integration for interpretability (no predictive ensemble)
No separate predictive ensemble was used, and integration 
served only to derive a robust cross-model ranking through 
weighted SHAP, with the contribution of each model being 
proportional to its R² value [39].

Final model formulation
The final prediction module is the single best-performing model 
selected under the 80/20 evaluation protocol (XGBoost with 
15 inputs), with all metrics reported based on out-of-sample 
evaluation. If the model is subsequently refitted on the entire 
dataset, this is solely for deployment on new sections, while the 
reported results remain based on the 80/20 evaluation [46].
This methodology provides a coherent and reproducible 
framework for Wi prediction. Each step, from initial model 
screening to final deployment, was carefully structured to 
ensure transparency, robustness, and scientific rigor. The 
selected models, along with their tuning and validation 
procedures, made the developed tool accurate and practically 
applicable in road safety assessment contexts.

5. �Analytical assessment of the performance of 
predictive models

The evaluation of various machine learning approaches to 
predict Wi is presented in stages. The evaluation covers the 
R² values of the models during training with the full dataset, 
testing using an 80/20 split, selection of optimal parameters, 
and development of the final predictive model.

5.1. �Indicative training evaluation and model 
screening

In the initial phase of the analysis, all the selected models were 
trained using the entire dataset. This approach enabled a rapid 
assessment of the capabilities of the different methods for the 
predictive modelling of Wi [43, 45]. The analysis included various 
mathematical approaches, such as linear models, DT-based 
models, boosting models, kernel methods, and ANNs.
These nine models were selected on the basis of their 
compatibility with the nature of the available data and their 
proven applicability in previous road safety studies [6, 8].
The training results demonstrate the general potential of the 
models and were used to identify those suitable for further 
analysis. The selection criterion was achieving an R² value 
greater than 50 %, which was considered the minimum threshold 
for capturing the variability in Wi.
Figure 5 shows the initial performance of all nine models in 
terms of their R² and RMSE values. Models with R² values above 
50 % were considered adequate for modelling this type of data 
and retained for further validation.

Figure 5. �Initial R² and RMSE performance of the nine predictive 
models

As a result of this initial screening, six models, CatBoost [37], 
MLP, XGBoost [47], LightGBM [38], GB, and RF [40], were 
selected for further evaluation using the structured procedure 
outlined in the methodology. The excluded models failed to 
meet the threshold for explanatory power and were therefore 
not considered in the subsequent optimisation steps.

Table 2. Final hyperparameters for each algorithm (80:20 split)

Model Final hyper-parameters

XGBoost (final predictor) n_estimators = 100; max_depth = 4; learning_rate = 0.3 (default); random_state = 42

Gradient Boosting (GB) n_estimators = 100; max_depth = 4; learning_rate = 0.1 (default); random_state = 42

Random Forest (RF) n_estimators = 100; max_depth = 4; min_samples_split = 2; random_state = 42

CatBoost (CB) iterations = 1000; depth = 6; learning_rate = 0.03; random_state = 42

LightGBM (LGBM) n_estimators = 300; learning_rate = 0.03; max_depth = 4; min_child_samples = 10; random_state = 42

Multilayer Perceptron (MLP) hidden_layer_sizes = (100, 50); activation = “relu”; alpha = 0.0005; max_iter = 1000; random_state = 42



Građevinar 12/2025

1193GRAĐEVINAR 77 (2025) 12, 1187-1199

Predicting unsafe road sections using machine learning

5.2. �Defining the optimal number of influential 
parameters

A combined analysis was conducted using SHAP values and 
permutation importance to elucidate the influence of individual 
parameters on Wi. Both techniques provide a transparent 
interpretation of the role of each input variable in the final 
prediction, which is essential for drawing practical conclusions 
and defining the forecasting formulas.
The SHAP values originate from game theory and express 
the contribution of each parameter to a particular prediction. 
These values correspond to the principle of fair distribution of 
influence on the output of the model. SHAP provides nuanced 
insights into which parameters exert the greatest influence 
and whether that influence is positive or negative based on the 
direction and magnitude of the values [42-44]. The value for a 
parameter i can be calculated as follows:

	 (1)

where Fi represents the SHAP value for parameter i, S is a 
subset of the remaining parameters, and f(S) is the model 
output for the input set S.

Additionally, the SHAP methodology facilitates indirect 
observation of interactions between parameters through their 
cumulative effect on the output of the model.
A permutation importance analysis was conducted to verify 
these results. This approach assesses the importance of each 
parameter by measuring the change in the model performance 
when the values of a particular parameter are replaced with 
permuted values. If this replacement causes a significant 
decrease in accuracy, the parameter is considered highly 
influentia [40]. The influence of the parameter is defined by the 
difference in the R² values, as follows:

Importancei = R 2
original – R 2

permuted,i	 (2)

where R 2
original is the explained variance of the original model 

and R 2
permuted,i is the value obtained after permuting the values 

of parameter i. The greater the difference, the more influential 
is the parameter on the model predictions.

For five of the six models (GB, RF, CatBoost, LightGBM, and 
XGB), the same SHAP explainer based on TreeExplainer was 
used, whereas for the MLP model, KernelExplainer was used 
because of its neural network structure.
Figure 6 shows the normalised importance of each of the 23 
parameters compared across models. The numbers in the 
squares represent absolute SHAP values rounded to two 
decimal places, while the colour visually indicates the relative 
importance on a scale from 0 to 1. This visualisation enables a 
direct comparison of the parameter influences across all models; 
PGDS, LIMIT, and K.Int. P.T are clearly the most consistently 
influential parameters. Simultaneously, parameters such as 
KON.NAK., H sign, and Max_Temp show lower or selective 
importance only in individual models. 
To finalise the parameter ranking, the SHAP values obtained 
from the six models were weighted according to their respective 
R² values from the 80/20 set analysis. These values are listed 
in Table 3.

Table 3. ��R² performance values used as weights in the final SHAP 
computation

Figure 6. Normalized SHAP feature importance values across all models

Model R² score Weight

Gradient Boosting (GB) 0.5381 0.225

Random Forest (RF) 0.5126 0.214

CatBoost (CB) 0.4664 0.195

LightGBM (LGBM) 0.3447 0.144

Multilayer Perceptron (MLP) 0.1607 0.067

XGBoost (XGB) 0.1043 0.044
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Furthermore, to integrate the results from all the models into a 
synthetic assessment, a weighted SHAP value was calculated 
for each parameter, as follows:

Sj = w1 · Sj1 + w2 · Sj2 +…+ w6 · Sj6	 (3)

Equation (3) represents the sum of the products of SHAP values 
for a given parameter j obtained from each of the six models 
(Sj1, Sj2, …., Sj6) and their corresponding weights (w1, w2, …., w6), 
which were determined in proportion to the R² accuracy of each 
model. This yields a resultant SHAP value that integrates all the 
models into a unified importance metric.
Figure 7 shows the resulting influence values for each parameter, 
expressed using the weighted SHAP value. This bar chart 
enables the ranking of parameters according to their aggregated 
importance across all models. The highest values were observed 
for PGDS, LIMIT, and K.Int. P.T, indicating their consistent and 
dominant influence on the predictions across all the models. By 
contrast, parameters such as KON.NAK., Max_Temp, and H sign 
showed the lowest weighted SHAP values, suggesting that their 
effect on the output variable was minimal or only selectively 
significant in a limited number of models. This diagram allows for 
a visual assessment of the key factors for future analyses and 
potential reduction in the number of variables.
For further analysis, the parameters were ranked based on their 
weighted SHAP values, with the goal of gradually reducing the 
number of variables. This approach enables the identification 
of the most influential parameters without a classic stepwise 
method but with an integrated evaluation across all models.

5.3. �Optimization of the number of parameters and 
selection of the most accurate model

In this phase, the six models were evaluated for their capability 
to predict Wi, with a focus on how prediction accuracy (i.e. R²) 

changes as the number of input parameters is reduced. The 
analysis was based on an 80/20 data split, with parameters 
sequentially removed according to their predefined importance 
rankings [41].
For each iteration, a subset of the most relevant features 
is selected, followed by model training and testing for the 
same split. The MLP model included input standardisation 
through a pipeline, whereas the LightGBM model employed 
specialised hyperparameters to control model complexity. A 
fixed random_state of 42 was used to ensure reproducibility 
of the results.
Figure 8 illustrates the variation of the R² values across different 
numbers of parameters for each model. The graph enables 
a visual comparison of the sensitivity and robustness of the 
model to dimensionality reduction. Notably, certain models, 
such as GB, exhibit stable performance over a wider parameter 
range, whereas others, such as MLP, show sharp fluctuations, 
particularly with fewer inputs.
Table 4 presents the maximum R² value achieved by each model, 
along with the corresponding number of parameters sorted in 
descending order of accuracy.

Table 4. �Maximum R² ( %) and corresponding number of parameters 
for each model

Figure 7. Feature Importance (weighted SHAP values)

Model R² [%] Number of parameters

XGBoost 65.05 15

GB 57.13 7

MLP 56.39 9

LightGBM 55.21 9

CatBoost 52.06 7

RF 48.40 6
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Based on these results, XGBoost was identified as the most 
suitable model for further applications, having achieved the 
highest R² value. Although GB and CatBoost operate with 
fewer parameters, they afford competitive accuracy and exhibit 
high stability, making them remarkably effective when data 
availability is limited. MLP and LightGBM achieved similar R² 
values but only under specific parameter conditions and with 
less consistency across the range.
These findings indicate that selecting the appropriate model 
and number of parameters can significantly improve prediction 
accuracy, even without relying on the full set of input variables. 
This analysis supports the formulation of a balanced trade-off 
between dimensionality and model stability, which is crucial for 
practical implementation.

5.4. Testing and validation

The process of testing and validation is essential to determine 
whether the developed predictive model for Wi is stable, 
accurate, and applicable in real-world conditions. As detailed 
in this section, regression-based testing was used to quantify 
the accuracy of the predictions, while classification-based 
validation was employed to examine the ability of the model to 
identify and rank higher-risk sections so as to support practical 
decisions on road safety interventions.

5.4.1. Testing (regression, 80/20)

The XGBoost model, trained on the 15 most influential 
parameters (defined via SHAP analysis), was evaluated using an 

80 % for training and 20 % for test. The “Predicted vs. Actual” 
comparison with the ideal y = x line facilitates a direct visual 
examination of the agreement between model outputs and 
observed Wi values (Figure 9).

Figure 9. �Comparison of predicted and actual Wi values from XGBoost 
with 80/20 training/test split

Most points were clustered near the ideal line, with the expected 
but limited spread at the extremes. Quantitatively, R² = 0.6505 
indicates that a substantial share of the variance in Wi can be 
attributed to the model, while MAE = 2.72 and RMSE = 3.63 
confirm moderate absolute and quadratic errors. Collectively, 
these results support the use of XGBoost as a solid basis for 
operational, section-level risk assessment.

Figure 8. Variation of R² (%) with number of input parameters for all models 
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5.4.2. Validation (classification for risk prioritization)

Beyond accurate regression predictions, practical deployment 
requires the model to prioritise the highest-risk sections at 
the top of the ranked list. The regression model was adapted 
to a classification setting with the threshold Wi ≥ 10.130 
(prevalence ≈ 20.5 %) in order to assess this aspect, and the 
performance was summarised over 100 bootstrap iterations. 
The choice of class-imbalance-aware metrics (precision/
recall at fixed inspection rates, PR-AUC) and rank-oriented 
diagnostics (gains/lift) is methodologically appropriate for 
prioritisation tasks in road safety analytics and aligns with 
recent applications of machine learning in crash risk modelling 
[42, 43]. Aggregated results (medians with 95 % CI) are 
summarised as follows:
-- AUROC: 0.692 [0.519, 0.834]
-- PR-AUC: 0.420 [0.229, 0.696]
-- Precision at 10 %: 0.500 [0.250, 0.750]
-- Recall at 10 %: 0.286 [0.143, 0.429]
-- Lift at 10 %: 2.857 [1.429, 4.286]

Figure 10 presents the gains curve. Inspecting only the top 
10 % of road sections using the model’s risk scores identified 
approximately half of all truly high-risk sections. This marks 
a significant improvement over random selection and a clear 
indication of operational usefulness for ranking.
Figure 10. �Gains curve for identifying sections with Wi ≥ 10.130 

(bootstrap median, 100 iterations)

Figure 11 shows the lift curve, which quantifies the advantage 
relative to random choice. In the top 10 % of the ranking, lift 
is approximately 2.9, implying that the model concentrates a 
markedly greater share of ‘positive’ cases near the top precisely 
the behaviour desired for effective prioritisation.
Collectively, the classification-based validation demonstrates 
that the mode delivers accurate Wi predictions and effectively 
ranks sections by risk. Combined with the regression test results, 
this provides a consistent and sufficiently strong confirmation 
of the practical applicability of the model for systematic road 
safety planning.

Figure 11. �Lift curve for evaluating relative gain in ranked selection 
(bootstrap median, 100 iterations)

6. Discussion of the results

6.1. Analysis of the results

The analysis covered six models (XGBoost, CatBoost, GB, 
RF, LightGBM, and MLP) and followed two tracks: R²-based 
evaluation (R², MAE, and RMSE) under an 80/20 train–test 
split and explainability via SHAP and permutation importance. 
The variable influence was computed for all six models and 
averaged with weights proportional to the R² value of each 
model from the 80/20 evaluation protocol ( GB: R² = 0.5381, 
weight = 0.225; RF: R² = 0.5126, weight = 0.214; CatBoost: 
R² = 0.4664, weight = 0.195; LightGBM: R² = 0.3447, weight = 
0.144; MLP: R² = 0.1607, weight = 0.067; and XGB: R² = 0.1043, 
weight = 0.044). This weighted SHAP aggregation produces a 
unified cross-model ranking that is stable and less sensitive to 
the idiosyncrasies of a single algorithm.
The resulting rankings show that the PGDS (AADT), LIMIT, and 
K.Int. P.T. were the most consistently influential factors, with PCI 
and Ave_Inc among the leading infrastructure/geometry variables. 
Conversely, KON.NAK., H sign, and Max_Temp exhibit selective/
low influence. Mechanistically, exposure and operating conditions 
increase the baseline risk, while pavement conditions and geometry 
modulate it through friction, stability, and sight conditions.
Ablation analysis (R² as a function of the number of inputs) 
indicated a clear trade-off between compactness and 
accuracy. Peak R² ( %) and optimal input counts per model 
are as follows: 65.05 (15 inputs) for XGBoost; 57.13 (7) for 
GB; 56.39 (9) for MLP; 55.21 (9) for LightGBM; 52.06 (7) for 
CatBoost; and 48.40 (6) for RF. Thus, the best generalisation 
is achieved with a reduced yet informative subset, as opposed 
to a full input space.
In the formal 80/20 validation, XGBoost [47] with 15 SHAP–
permutation–selected inputs achieved R² = 0.6505, MAE = 
2.72, and RMSE = 3.63, with test points concentrated around 
the ideal y = x line, confirming a strong agreement between 
the predicted and observed Wi values.
For operational validation (prioritisation), the regression 
output was adapted to a classification scenario using the 
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threshold Wi ≥ 10.130 (prevalence ≈ 20.5 %) and 100× 
bootstrap summarisation. The results were as follows: 
AUROC = 0.692, PR-AUC = 0.420, Precision@10 % = 0.500, 
Recall@10 % = 0.286, and Lift@10 % = 2.857. These 
results imply that inspecting only the top 10 % of segments 
captured a substantially larger share of truly high-risk 
segments than random selection (as also evident from the 
gains/lift curves).
In summary, 15 inputs are sufficient for stable generalisation 
in XGBoost; GB and CatBoost deliver competitive performance 
with even fewer inputs (useful under data constraints). 
Beyond predicting Wi with strong out-of-sample agreement 
(R²), the approach effectively concentrates the highest-risk 
segments at the top of the list for inspection and intervention. 
Interpretation relies on validated (out-of-sample) results; 
fits obtained on the full development set were used only 
exploratorily and not for formal evaluation.

6.2. Comparison with previous research

The validated results for Wi under an 80/20 split (XGBoost, 15 
inputs: R² = 0.6505, MAE = 2.72, RMSE = 3.63) were aligned 
with current practices that favour tree-based ensembles and 
explainability (SHAP). In the regression studies summarised 
in Table 1, reported R² values typically fall in the vicinity of 
0.84 to 0.92 for national/urban settings with larger and richer 
datasets [15,17,18,21,23]. In hybrid/interpretability-focused 
settings with an urban emphasis, results are commonly 
in the vicinity of R² ≈ 0.83 to 0.87 [20]. These differences 
are expected, arising from target mismatch (while many 
studies predict severity, this study modelled continuous Wi), 
spatial scale, and attribute richness. Hence, comparisons are 
intended to be methodological (emphasising the combined 
use of boosting and explainable artificial intelligence (XAI)) 
rather than direct numerical equivalence.
In classification and hybrid setups, studies have typically 
reported AUC/PR-AUC/precision/recall, with AUC 
approximately within 0.78 to 0.87 depending on task and 
data [19–20]. For operational comparability, a prioritisation 
check was also conducted in this study: at a threshold of 
Wi ≥ 10.130 (prevalence ≈ 20.5 %; 100× bootstrap), the 
results are AUROC = 0.692, PR-AUC = 0.420, Precision@10 
% = 0.500, Recall@10 % = 0.286, and Lift@10 % = 2.857, 
indicating effective concentration of the highest-risk 
segments at the top of the list. The higher R²/AUC values 
reported in the literature are partly attributable to larger 
and richer datasets (spatially and temporally), which provide 
broader variability and more efficient learning; the setup 
with 161 segments naturally imposes stricter conditions 
for generalization.
Regarding determinants, the findings indicate that exposure 
and operating environment (PGDS/AADT, speed limit, and 
intersection density) dominate, while pavement condition 
and geometry (PCI, longitudinal grade) modulate risk. 

These are consistent with studies that combine boosting 
with SHAP for explainability [17, 20, 24]. This supports the 
use of weighted SHAP aggregation ‘across models’ and 
justifies input reduction without materially compromising 
generalisation.
In summary, the out-of-sample results are in line with 
contemporary approaches (ensemble-based approaches 
coupled with SHAP) and are operationally useful for 
prioritisation. Table 1 serves as a reference frame for a 
methodologically consistent comparison of the tasks, 
metrics, and scales.

7. Limitations and future directions

Although the application of advanced machine learning 
models demonstrated validated out-of-sample performance 
(R² = 0.6505; MAE = 2.72; RMSE = 3.63) in predicting Wi, 
certain limitations need to be considered.
Careful management of the risk of overfitting is necessary, 
particularly for models involving a large number of 
parameters [48]. In the classification-based validation 
used for prioritisation, performance was bounded by the 
class prevalence (~20.5 %); this should be considered when 
interpreting AUROC/PR-AUC.
The main limitation arises from the availability and detail of 
the input data. Updated information regarding the condition 
of vertical and horizontal road signage, current state of road 
pavements, and complete climatic parameters is lacking.
Furthermore, the traffic accident data were limited in terms 
of detailed descriptions of causes, conditions at the time 
of accidents, and exact geographic locations of incidents, 
thereby influencing the precision of the models.
The models were trained using data from the main road 
network. Thus, applying the same approach to other road 
categories would require additional adaptation.
For future research, it is recommended to expand the database to 
include information on the current condition of the infrastructure, 
more specific climatic conditions, and factors related to road user 
behaviour. 
Moreover, the use of combined algorithms and explainable 
machine learning techniques can further improve the predictive 
accuracy and interpretability of the model results.

8. Conclusion

This study demonstrated that advanced machine learning 
methods can reliably predict Wi at the road segment level 
and support operational decision-making. Under formal 
80/20 validation, XGBoost with 15 SHAP-permutation-
selected inputs achieved R² = 0.6505, MAE = 2.72, and 
RMSE = 3.63, indicating a strong out-of-sample agreement 
between the predicted and observed values. A cross-
model, weighted SHAP aggregation, provided a stable 
ranking of determinants with AADT (PGDS), speed limit 
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(LIMIT), and intersection density (K.Int. P.T) as the most 
influential, followed by the pavement condition (PCI) and 
longitudinal grade (Ave_ Inc.). An operational check tailored 
for prioritisation further showed that, at Wi ≥ 10.130 
(prevalence ≈ 20.5 %), the model effectively concentrates 
risk (AUROC = 0.692; PR-AUC = 0.420; Precision@10 % = 
0.500; Recall@10 % = 0.286; Lift@10 % = 2.857), making it 
suitable for targeting inspections and interventions when 
resources are limited.
The main contributions of this study are as follows. a 
standardised out-of-sample comparison of ensemble 
and baseline models trained under equal conditions for 
Wi prediction; an integrated variable-ranking procedure 
(weighted SHAP across six models) that guides dimensionality 
reduction without materially sacrificing generalisation; and 
an operational validation framework that links regression 

outputs to the actionable rank-based screening of high-risk 
segments.
Although the results are promising, they remain conditioned 
by data granularity and coverage (e.g. detailed signage state, 
current pavement condition, precise crash geolocation, and 
richer climatic descriptors). Expanding and updating these 
inputs, incorporating spatial/temporal structures, and 
conducting external validation on additional networks are 
expected to improve explanatory power and transferability. In 
practice, the findings indicate the need for a combined strategy 
of managing exposure and the operating speed environment 
(e.g. speed-limit policies and junction management), while 
maintaining and upgrading infrastructure (surface condition, 
drainage, and sight distance). The proposed approach offers 
a transparent, explainable, and operationally meaningful 
pathway for prioritising road safety measures at scale.
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