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GPU based parallel FDEM for analysis of cable structures

A combined finite-discrete element method, adapted for the analysis of a parallel 
cable element model using graphic cards, is presented in the paper. The basic objective 
is to speed up sequential computation time by one or two orders of magnitude. The 
developed solution is implemented in the open-source FDEM Y code. Performance 
measurements for this solution are conducted on simple examples, and relevant 
discussions are made.
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Paralelni model kabela za grafičke kartice baziran na metodi konačno 
diskretnih elemenata

U radu je prikazana adaptacija kombinirane metode konačno diskretnih elemenata za 
paralelni model kabelskog elementa pomoću grafičkih kartica. Osnovni cilj je ubrzanje 
proračunskog vremena serijskog koda za jedan ili dva reda veličine. Razvijeno rješenje 
je implementirano unutar slobodno dostupnog FDEM Y koda. Mjerenje performansi 
razvijenog rješenja kao i diskusija o tome prikazani su na jednostavnim primjerima.
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Parallelmodell von Kabeln für Grafikkarten, basiert auf der Methode der 
finiten diskreten Elemente

In der Arbeit wird die Anpassung der kombinierten Methode der finiten diskreten 
Elemente für ein paralleles Kabelmodell anhand von Grafikkarten dargestellt. 
Der Schwerpunkt lag dabei auf der Beschleunigung der Berechnungszeit des 
Seriencodes um eine oder zwei Größenordnungen. Die entwickelte Lösung wurde 
innerhalb der frei zugänglichen FDEM Y Codes integriert. An einfachen Beispielen 
wurden die Messung der Leistungen der entwickelten Lösung sowie entsprechende 
Diskussionen dargestellt. 
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1. Introduction 

Cables are very common structural elements that are used 
in forming three-dimensional structures such as suspended 
bridges, transmission lines, cable transportation systems, 
mooring systems, etc. They transfer load exclusively by axial 
force, and can therefore be considered as simple carrying 
structural systems. On the other hand, significant difficulties 
are encountered in computational modelling of cables due to 
their highly non-linear behaviour. Many numerical models for 
cables exhibit significant numerical instability or poor efficiency. 
Simplified solutions provide overly inaccurate solutions that 
even fail to accurately describe equilibrium in the final deformed 
configuration of the cable.

1.1. State of the art

The analysis of cable elements has been in the focus of interest 
for many years. In 1691 the Bernoulli brothers, Leibnitz and 
Huygens developed equilibrium equations for inextensible cables 
suspended from their ends and subjected to gravity loads. Leibnitz 
used the theory of infinitesimal calculation to derive the equation 
of this curve. In 1891, Routh solved the equation for symmetrically 
suspended cables consisting of a linear elastic material, while 
in 1981 Irvine adopted the Lagrangian approach to the solution 
of non-symmetrical suspended elastic cables by formulating an 
expression for the tangent stiffness matrix. It should be noted that 
the above-mentioned approaches are based on the hypothesis of 
small deformations, meaning that the forces are integrated with 
respect to the initial configuration of the cable. Also, the analytical 
solution of the cable structure is known for only a limited number 
of load cases and boundary conditions.
For this reason, cables are most frequently analysed by numerical 
methods in which the cable structure is discretized into smaller 
elements. Simple equations that model these smaller elements 
are then assembled into a larger system of equations that models 
the entire problem. Two distinct methods can be differentiated 
among various numerical methods that have been proposed for 
cable structure modelling [1].
In the first approach, which is regarded as standard in the finite 
element method, polynomial functions are used as basic functions 
to describe the shape and displacement within cable elements. The 
simplest finite elements in this approach are two-node straight 
elements [2]. These elements exhibit axial stiffness only, and are 
generally applicable to cables with a small curvature gradient, as 
in pre-stressed cables. In the case of large-curvature loose cables, 
geometry is described by a large number of finite elements; thus, 
the analysis becomes inefficient due to a large number of degrees 
of freedom.
Another numerical model in this approach is the multi-node 
isoperimetric element, which is achieved by adding more nodes to 
the finite element. The elements are usually three- or four-noded, 
depending on whether parabolic or cubic interpolation functions 
are used. Rotational degrees of freedom are usually added to the 
nodes in order to ensure continuity in curvature between the two 

finite elements [3]. This type of finite element describes much 
better the geometry of the cable, although a large number of finite 
elements is also necessary for large displacement and curvature 
gradient.
The second approach uses analytical solution to describe the 
shape and displacement within cable elements, taking into 
account the type of load applied along the cable [4–9]. This group 
of numerical models includes parabolic elastic elements that are 
widely applied due to their simplicity, and an extension of Irvine 
model developed, inter alia, by Ahmadi-Kashani and Bell [10]. The 
main feature of these numerical models is that, for the type of load 
from which their basic functions have been derived, they show 
correspondence with analytical solution with very few or even only 
one final element, while requiring a much larger number of finite 
elements for a different type of load.
The combined finite discrete element method (FDEM) proposed by 
Munjiza [11–13] constitutes one of the methods that are currently 
widely applied in the analysis of engineering structures.

1.2. FDEM numerical algorithm 

The combined finite-discrete element method (FDEM), presented 
by Munjiza [11–13], merges finite element tools and technics 
with discrete element algorithms. Finite element-based analysis 
of continua is merged with discrete element-based transient 
dynamics, contact detection, and contact interaction solutions. 
The FDEM was mainly developed for simulation of fracturing 
problems involving a large number (from a few thousands to more 
than a million) deformable bodies that interact with each other 
and may split and separate during the analysis. In the framework 
of this method, the deformable bodies (discrete elements) are 
discretized by triangular (2D) or tetrahedral (3D) finite elements. 
The material non-linearity is considered via the material law at 
Gauss points, while the fracture and fragmentation of discrete 
elements are considered through the displacement-based contact 
elements that are implemented within a finite element mesh. The 
interaction between discrete elements is considered through the 
contact interaction algorithm for normal forces, which is based on 
potential contact forces. The method relies on an explicit numerical 
integration of the equation of motion. All previously mentioned 
numerical algorithms are implemented in the open source Y2D (for 
2D analysis) and Y3D (for 3D analysis) numerical code. 
The FDEM has found wide application in various fields of science 
such as structural analysis [14–16], rock mechanics [17, 18], 
maritime engineering [19], biomedical engineering [20] and 
mechanical engineering [21]. 
Sequential CPU algorithms for FDEM problems have been 
developed, including Munjiza-NBS [22] and MR [23] algorithm for 
contact detection, combined single and a smeared crack model 
for fracture and fragmentation [24], penalty function method 
based potential contact force for contact interaction [25], and time 
saving algorithms for force evaluation [11]. All above mentioned 
algorithms are part of the open source FDEM Y2D and Y3D 
packages for the analysis of two dimensional problems and three 
dimensional problems, respectively.
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The FDEM is calculation intensive and, consequently, it is difficult to 
analyse large scale problems using the sequential CPU hardware. 
Different types of parallelisation solutions have therefore been 
explored, including the shared memory parallel computers [26, 
27], distributed memory parallel computers [28], hardware 
independent virtual parallel machine framework for FDEM [29], 
and the MPI static [30] and dynamic space decomposition [31]. 
Parallelization procedures utilize hardware in similar fashion: 
concurrent job execution on many processor cores working on a 
specific part of the domain with communication in-between. The 
usage of graphics processing units (GPUs) for both the DEM [32] 
and 2D coupled FEM/DEM [33] analysis has been explored. The 
GPU parallelization of the coupled FEM/DEM approach (CDEM) 
was described by Wang et al. [33]. However the parallelization 
of FDEM problems using the GPU itself has been explored to a 
somewhat lesser extent.

1.3. GPU hardware and software model

The Graphic (Visual) Processing Unit – GPU [34], is a type of 
hardware that was initially dedicated for the creation of computer 
images, but has become a modern-day supplement for high end 
processing CPUs. Although the term GPU was coined by NVidia 
in 1999 for its GTS 256 model [34], it now generally includes all 
historical image creation hardware solutions from the 80s up to 
the present time.
Depending on the manufacturer and specific architecture 
generation, common basic building blocks (BBB) of GPU’s can 
be listed as follows:
 - Single precision processor (SPP) – consists of floating-point 

unit (FPU) and arithmetic- logic unit (ALU), depicted in Figure 
1 – used for simple algebraic operations

 - DPP - Double precision processors; 64-bit floating point 
operands

 - SFU - Special functions processor - single precision mathematical 
transcendental functions – sin(), cos(), log, exp. etc.)

 - LD/ST – load and store units

Different number of specific BBBs constitute streaming 
multiprocessors (SMM) (see Figure 1), which are clusters of 
processors that share parts of the chip memory. The chip is 
made of 16 streaming multiprocessors, each made of four 
quadrants with 32 SPPs, 8 LD/STs, 8 SFUs, and 2 DPP cores.
The GPU memory (hardware parameters for Maxwell GTX 980 
[35]) is divided into:

 - Registers 
 - Unified L1/Texture cache 
 - Shared memory 
 - Local memory 
 - Read only cache 
 - Global memory

where registers are visible only to processors currently using 
it, shared memory is shared among processors within a 
multiprocessor, and global memory is shared among all processors.
The code that is run in parallel on the GPU processors is called a 
kernel. Each copy executed on one of the processors is called a 
thread. It is an exact copy of the kernel, running concurrently with 
other copies – threads.
To make full use of the data parallelism, threads need to have an 
aligned memory access, and are therefore grouped into warps. 
Thirty-two threads constitute one warp. As managing all execution 
related operations manually can be quite tedious, different types 
of application programming interfaces (API) have been developed. 
The proprietary NVidia software is used, although open source 
solutions are also available (OpenCL).
The FDEM based GPU parallel algorithm for the analysis of cable 
structures is presented in the paper. The algorithm exploits 
massive parallelism offered by modern day general computation 
graphics cards, as well as advantages gained by combining discrete 
element techniques with the FEM.
All computations presented in this paper were performed using the 
NVidia GTX 980 card - Maxwell architecture (hardware parameters 
depicted in Figure 1). To the authors’ knowledge, no similar codes for 
parallel processing of cable structures have so far been developed.

2. GPU algorithm 

The numerical algorithm for the analysis 
of cable structures [36] has been adapted 
in this section for parallel processing using 
GPUs. The discretisation of structure, and 
detailed information related to axial carrying 
mechanism and time integration of the 
equation of motion, are shown below.

2.1. Discretisation

In this algorithm, the cable is discretised 
with two-noded finite elements that can 
transfer axial forces only, i.e. the forces 
in the direction of their axes [36]. Masses 

Figure 1.  Maxwell GTX 980 –a) chip layout b) SMM layout c) one SMM quadrant layout, as per 
[35]
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are lumped into the nodes of the finite elements as shown in 
Figure 2.

Figure 2. Discretisation of cable structure

2.2. Axial carrying mechanism

Two-noded finite elements support axial stresses only, i.e. the 
stresses in the direction of their axes [36]. The geometry of the 
finite element is defined by two nodes, as shown in Figure 3. 
Each node is described by its global initial and current Cartesian 
coordinates (x,y,z).

Figure 3.  Initial and current coordinates of the nodes of the finite 
element.

The initial li and current lc length of the finite element can be 
determined based on known coordinates of the nodes in the 
initial and current configurations, as shown in Figure 3. The axial 
strain in each finite element is obtained according to

e = (lc - li) / li (1)

By using the linear viscoelastic material behaviour, the 
corresponding stresses are obtained according to

 (2)

where E represents the modulus of elasticity,  represents the 
damping coefficient and  stands for the velocity of the change 
in strain. 

Figure 4. Equivalent nodal forces due to axial stress of finite element

Equivalent nodal forces in the direction of the finite element axis 
(Figure 4) are obtained according to 

f0 = f1 = sA (3)

where A represents the cross-sectional area of the cable

2.3. Time integration of the equation of motion

The shape of a cable structure and its position in space at any 
given time is defined by current coordinates of the finite ele-
ment nodes xi, where i is associated with the degree of free-
dom. Each node has three degrees of freedom, which relates to 
translation in the x, y and z directions. Similarly, the velocity field 
and acceleration field are defined by nodal velocities vi and nodal 
accelerations ai, respectively [11-13].
The explicit time integration scheme is applied to each node and 
each degree of freedom. Nodal forces from the axial carrying 
mechanism and external loads, such as gravity load or some other 
external load, are all added together and the total nodal force fi, 
associated with each degree of freedom, is obtained. The dynamic 
equilibrium for each degree of freedom is therefore given by 

miai = fi (4)

where mi is the mass of the corresponding node. 
A central difference time integration scheme, based on explicit 
integration of the governing equation for each degree of 
freedom, is used for integration of the above equation. The 
scheme can be formulated as follows

ni,t+Dt/2 = ni,t+Dt/2 + Dt fi,t/mi

 (5)
xi,t+Dt = xi,t + Dt ni,t+Dt/2

where Δt is a time step. 

Figure 5. Flow chart for proposed parallelisation algorithm of cable element
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Considering the overall nature of parallel algorithms, models 
with high number of elements tend to perform better than 
smaller models. Therefore, the adopted discretisation with 
simplest two-noded finite elements is considered to be efficient 
for arbitrary geometry. 
The schematic flowchart describing full numerical procedure is 
shown in Figure 4. It is worth noting that the proposed numerical 
procedure does not require assembly of either stiffness or mass 
matrices, which makes it suitable for parallel programming. 
From the standpoint of programming, the proposed cable 
element formulation data is stored into 1D arrays and the float 
data structure type is used (comparison with double is given). 
Each 1D vector is aligned to 384 bit strides so as to ensure an 
optimum global memory access times. The data shared among 
all kernels is stored in shared memory, while all other instances 
of shared data are stored in registers to improve performance. 
Local temporary variables are introduced to reduce the overall 
register count per thread. These variables are used for multiple 
global variable calculations. The initial system configuration is 
calculated at the CPU (element length, nodal connectivity), and the 
data is transferred from the CPU (host) to the GPU (device). After 
completion of all calculations for all time steps, the results are 
copied back from the GPU to the CPU and written into output files.

3. Numerical results

3.1. Example 1 – Verification of algorithm

Figure 5 shows initial configuration of a simple catenary system, 
with a fixed support in point A, and sliding support in point B, 
where horizontal force F=60000 N is applied. The total length of 
the system is l=1000 m. The calculation is done for the catenary 
mass m=5kg/m’. cross section area A = 25 cm2, modulus of 
elasticity E=210 000 MPa, and Poisson coefficient n = 0.
The analytical solution for vertical deflection in point X is 
obtained when the system is in equilibrium, as shown in (6)

 (6)

The analytical solution for vertical deflection in point X is yX=-
100 m for the defined properties and boundary conditions 
(Figure 6). 

Figure 6. Initial system configuration

Comparison of vertical deflection of point X for analytical solution, 
based on the commercial software package SCIA Engineer [37], 
and the proposed parallel algorithm with different sized meshes 
are given in Table 1. Although the analytical solution of vertical 
deflection in point X does not include cable extension, material 
chrematistics are chosen in such a way that the achieved 
extension is negligible (order of magnitude: one mm).
The comparison of execution times for sequential CPU 
implementation of the Y-code with PC configuration (Intel core i7 
processor, overclocked at 3,75 GHz, 16 GB RAM, PCI Express 2.0) 
and the parallel GPU code for different sized meshes, is shown in 
Figure 6. The GPU parallel code performs poorly for small sized 
problems, due to GPU nature (multiple kernel invocation overhead 
on small sample size), but it gradually outperforms serial code up 
to 80 times for systems with 10 million elements. According to 
Table 1, the relative error of results obtained with the commercial 
package SCIA Engineer is smaller compared to the FDEM. However, 
advantages of the proposed numerical model include geometric 
nonlinearity (large rotations and large displacements), while the 
linear material model used can easily be expanded to include 
different types of material nonlinearities. The contact interaction 
and the possibility of cable fracture can also be introduced.

Figure 7.  Comparison of execution time for serial CPU, and parallel 
GPU algorithm

Solution Vertical deflection in point  C [m] Absolute value of relative error [%]

Analytical solution per (6) 100 0

Commercial FEM package [37] – 1000 elements 100.73 0.73

Algorithm - 100 elements 96.24 3.76

Algorithm - 1000 elements 98.27 1.73

Algorithm - 10000 elements 99.96 0.04

Algorithm - 100000 elements 99.99 0.01

Table 1. Vertical displacement of point C – comparison of results and relative error 
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Figure 8.  Parallel algorithm execution time for variable number of 
blocks, and threads per block 

Figure 9.  Relative speedup of code execution time, in comparison to 
running only one thread of parallel code on GPU

Considering the programming strategy applied, an optimum 
performance in terms of hardware utilization can be achieved 
by using 256 blocks, and 64 threads per block, as shown in 
Figure 8. The overall speedup is limited by resources used per 
one thread, and the maximum speedup is achieved when 16384 
threads are used (Figure 9).

Figure 10.  Execution time for parallel algorithm code using data type 
float vs double 

Comparison of execution times for different data types is 
depicted in Figure 10. Due to the number of dedicated cores 
on the device, the overall speed execution of algorithm utilising 
float data type is up to three times faster. 

3.2. Wave propagation – dynamic analysis

This example is used to demonstrate dynamic capabilities of the 
developed algorithm. The point A of the system depicted in Figure 
10 is exposed to the oscillating speed of vy as per equation

ny = 2cos(wt)

for the time interval t = 2,0 s, where w = 0,5 p.

Figure 11. Wave propagation - Initial system configuration

The calculation is conducted for the catenary mass m =1kg/m’. 
cross section area A = 25 cm2, modulus of elasticity E= 210 000 
MPa, and Poisson coefficient n = 0.
The system length is l =100.0 m, whereas the discretisation 
length of one element is 0.01m, for the overall number of 10000 
finite elements. One million time steps are executed, each at 
10-5 s, for the total simulation time of t =10 s. 

Figure 12. Wave propagation in catenary

The displacement of catenary in global Y direction is shown 
in Figure 12 for different time frames. A wave traveling at the 
speed of 16.6 m/s is induced by the oscillating motion of point A 
and, at time t = 6 s, it hits its fixed support in point B, and from 
there it travels back to point A. 

3.3. Mooring - static cable analysis

Example 3 demonstrates form finding for static equilibrium of 
the mooring system. The mooring system depicted in Figure 12 
is fixed at point A, while point B is free. At point B, the horizontal 
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The system position at various time steps is shown in Figure 
14. The algorithm convergence to stationary position of the 
system, for the simulation time of 1.0 s (two million time steps), 
is within 1 % for X direction, and 5 % for Y direction. The system 
convergence per specific simulation time is given in Table 2.

4. Conclusion

This paper presents a FDEM based GPU parallel algorithm for the 
static and dynamic analysis of cable structures. The algorithm 
is based on the combined finite-discrete element method 
model, using the two-noded rotation free finite elements. The 
information related to the parallelisation strategy and GPU 
implementation is briefly presented in the paper. The proposed 
algorithms are incorporated into the existing open-source 
"YFDEM" package. The model performance is demonstrated 
using simple benchmark tests by comparing the results 
obtained by the proposed algorithm with known analytical and 
numerical results.
The developed algorithm performs poorly for small systems 
consisting of several hundred elements, when compared to 
serial implementation. Its performance gradually improves and 
achieves the speedup of 80 times for systems with several 
million elements. 
The proposed parallel model performs very well for systems 
requiring a large number of elements, and can be applied in 
cases when large interconnected systems of cables are used. 
Additional dynamic properties shown in examples 2 and 3 make it 
suitable for specific engineering problems, including propagation 
effects at large linear distribution networks, mooring of offshore 
structures, and analysis of large cable constructions. 
In addition, the fracture, material nonlinearity, contact detection, 
and interaction within cable elements and other types of FDEM 
elements, can easily be introduced, thus providing a simulation 
tool for a wide spectrum of research fields, including various 
areas of civil engineering, maritime engineering, mechanical 
engineering, etc.

force Fx = 1000 kN, and the vertical force Fy = 600 kN, are applied 
to initial configuration. 

Figure 13. Mooring - Initial configuration of system

Properties for catenary are: mass m=5kg/m’, cross section 
area A = 25 cm2, modulus of elasticity E= 210 000 MPa, 
Poisson coefficient n = 0, system length l = 500.0 m, and the 
discretisation length of one element is 0.01m, for the overall 
number of 50000 finite elements. Twenty million time steps are 
executed, each 5·10-6 s, for the total simulation time of t = 10 s. 

Figure 14. Equilibrium state of mooring system 

Table 2. Coordinates of point B for various simulation times 
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